Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis?

Kumar, R. (2022). Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS Applied Bio Materials. 10.1021/acsabm.2c00346

Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery

Kumar, R., Le, N., Oviedo, F., Brown, M.E., & Reineke, T.M. (2022) Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery. JACS Au, 10.1021/jacsau.1c00467

Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery

Bockman, M.R., Dalal, R.J., Kumar, R., & Reineke, T.M. (2021) Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery. Polymer Chemistry, 10.1039/D1PY00250C.

Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression

Dalal, R.J., Kumar, R, Ohnsorg, M., Brown, M.E., & Reineke, T.M. (2021) Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression. ACS Macro Letters, 10, XXX, 886–893.

Polymeric Delivery of Therapeutic Nucleic Acids

Kumar, R*., Chalarca, C.F.S.*, Bockman, M.R.*, Van Bruggen, C., Grimme. C.J., Dalal, R.J., Hanson, M.G., Hexum, J.K., & Reineke, T.M. (2021) Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 10.1021/acs.chemrev.0c00997. *equal contribution

Efficient Polymer-Mediated Delivery of Gene- Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning

Kumar, R., Le, N., Tan, Z., Brown, M.E., Jian, S., & Reineke, T.M. (2020) Efficient polymer-mediated delivery of ribonucleoprotein payloads through combinatorial design & parallelized experimentation. ACS Nano, 10.1021/acsnano.0c08549.

macro2019

Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency.

Tan, Z., Jiang, Y., Ganewatta, M.S., Kumar, R., Keith, A., Twaroski, K., Pengo, T., Tolar, J., Lodge, T.P., Reineke, T.M. Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules, 52, 21, 8197-8206 (2019).

TOC Virus Graphic

Carbohydrate-Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces

Kumar, R., Kratzer, D., Cheng, K., Prisby, J., Sugai, J., Giannobile, W. V. & Lahann, J. Carbohydrate-Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces. Macromol. Rapid Commun. 40, 1800530 (2019).

patterning1

Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films

Kumar, R., Welle, A., Becker, F., Kopyeva, I. & Lahann, J. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. ACS Appl. Mater. Interfaces 10, 31965–31976 (2018).

tocfinallang2017

Examining Nanoparticle Adsorption on Electrostatically “Patchy” Glycopolymer Brushes Using Real-Time Zeta-Potential Measurements.

Kumar, R., Kopyeva, I., Cheng, K., Liu, K. & Lahann, J. Examining Nanoparticle Adsorption on Electrostatically “Patchy” Glycopolymer Brushes Using Real-Time ζ-Potential Measurements. Langmuir 33, 6322–6332 (2017).