Publications

2024

The spatial distribution of lipophilic cations in gradient copolymers regulates polymer−pDNA complexation, polyplex  aggregation, and intracellular pDNA delivery
Lawson, J.L., Sekar, R.P.,Wright, Wheller, G., Yanes, J., Estridge, J., Johansen, C.G., Farnsowrth, N.L., Kumar, P., Tay, J.W., A.R.E, Kumar, R. The spatial distribution of lipophilic cations in gradient copolymers regulates polymer−pDNA complexation, polyplex aggregation, and intracellular pDNA delivery, (2024),  Biomacromolecules. 10.1021/acs.biomac.4c01101 [Link to Article]
Machine learning elucidates design features of pDNA lipid nanoparticles for cell type-preferential transfection
Cheng, L.,  Zhu, Y., Ma, J., Aggarwal, A., Toh, W.H.,  Shin, C., Sangpachatanaruk, W., Weng, G., Kumar, R., * and Mao, H-Q*, Machine learning elucidates design features of pDNA lipid nanoparticles for cell type-preferential transfection, (2024), ACS Nano, 10.1021/acsnano.4c07615 [Link to Article]
Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery
Leyden, M.C., Oviedo, F., Saxena, S., Kumar. R., Le, N., Reineke, T.M., Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery, (2024), Bioconjugate Chemistry  [Link to Article]
Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability
Sekar, R.P., Lawson, J.L., Wright, A.R.E, McGrath, C., Schadeck, C., Kumar, P., Tay, J.W., Dragavon, J., Kumar, R. Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability (2024), RSC Applied Polymers [Link to Article]
Identification of a novel, MSC-induced macrophage subtype via single-cell sequencing: implications for intervertebral disc degeneration therapy
Koroth, J., Chitwood, C. , Kumar, R., Lin, W-H.,  Reves, B.T., Boyce, T., Reineke, T.M.,  Ellingson, A.M., Johnson, C.P., Stone, L.S., Chaffin, K.C., Simha, N.K., Ogle, B.M., Bradley, E.W.,  Identification of a novel, MSC-induced macrophage subtype via single-cell sequencing: implications for intervertebral disc degeneration therapy   (2024) Front. Cell Dev. Biol,  Volume 11 - 2023 [Link to Article]

2022

Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis?
Kumar, R. (2022). Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS Applied Bio Materials. 5, 6, 2507–2535 [Link to Article]
Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery
Kumar, R., Le, N., Oviedo, F., Brown, M.E., & Reineke, T.M. (2022) Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery. JACS Au, 2, 2, 428–442 [PDF]   [Link to Article]

2021

Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery
Bockman, M.R., Dalal, R.J., Kumar, R., & Reineke, T.M. (2021) Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery. Polymer Chemistry, 10.1039/D1PY00250C. [PDF]   [Link to Article]
Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression
Dalal, R.J., Kumar, R, Ohnsorg, M., Brown, M.E., & Reineke, T.M. (2021) Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression. ACS Macro Letters, 10, XXX, 886–893. [PDF]   [Link to Article]
Polymeric Delivery of Therapeutic Nucleic Acids
Kumar, R*., Chalarca, C.F.S.*, Bockman, M.R.*, Van Bruggen, C., Grimme. C.J., Dalal, R.J., Hanson, M.G., Hexum, J.K., & Reineke, T.M. (2021) Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 10.1021/acs.chemrev.0c00997. *equal contribution [PDF]   [Link to Article]

2020

Efficient Polymer-Mediated Delivery of Gene- Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning
Kumar, R., Le, N., Tan, Z., Brown, M.E., Jian, S., & Reineke, T.M. (2020) Efficient polymer-mediated delivery of ribonucleoprotein payloads through combinatorial design & parallelized experimentation. ACS Nano, 10.1021/acsnano.0c08549. [PDF]   [Link to Article]

2019

Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency.
Tan, Z., Jiang, Y., Ganewatta, M.S., Kumar, R., Keith, A., Twaroski, K., Pengo, T., Tolar, J., Lodge, T.P., Reineke, T.M. Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules, 52, 21, 8197-8206 (2019). [PDF]   [Link to Article]
Carbohydrate-Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces
Kumar, R., Kratzer, D., Cheng, K., Prisby, J., Sugai, J., Giannobile, W. V. & Lahann, J. Carbohydrate-Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces. Macromol. Rapid Commun. 40, 1800530 (2019). [PDF]   [Link to Article]

2018

Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films
Kumar, R., Welle, A., Becker, F., Kopyeva, I. & Lahann, J. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. ACS Appl. Mater. Interfaces 10, 31965–31976 (2018). [PDF]   [Link to Article]

2017

Examining Nanoparticle Adsorption on Electrostatically “Patchy” Glycopolymer Brushes Using Real-Time Zeta-Potential Measurements.
Kumar, R., Kopyeva, I., Cheng, K., Liu, K. & Lahann, J. Examining Nanoparticle Adsorption on Electrostatically “Patchy” Glycopolymer Brushes Using Real-Time ζ-Potential Measurements. Langmuir 33, 6322–6332 (2017). [PDF]   [Link to Article]
Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes.
Bally-Le Gall, F., Hussal, C., Kramer, J., Cheng, K., Kumar, R., Eyster, T., Baek, A., Trouillet, V., Nieger, M., Bräse, S. & Lahann, J Bally-Le Gall, F. et al. Polylutidines: Multifunctional Surfaces through Vapor-Based Polymerization of Substituted Pyridinophanes. Chem. - A Eur. J. 23, 13342–13350 (2017). [PDF]   [Link to Article]
pH-Responsive Aminomethyl Functionalized Poly(p-xylylene) Coatings by Chemical Vapor Deposition Polymerization.
Koenig, M., Kumar, R., Hussal, C., Trouillet, V., Barner, L. & Lahann, J. pH-Responsive Aminomethyl Functionalized Poly(p-xylylene) Coatings by Chemical Vapor Deposition Polymerization. Macromol. Chem. Phys. 218, 1600521 (2017). [PDF]   [Link to Article]

2016

Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach.
Kumar, R. & Lahann, J. Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach. ACS Appl. Mater. Interfaces 8, 16595–16603 (2016). [PDF]   [Link to Article]

2014

P. H. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings.
Qian, X., Villa-Diaz, L. G., Kumar, R., Lahann, J. & Krebsbach, P. H. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials 35, 9581–9590 (2014). [PDF]   [Link to Article]