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ABSTRACT: The advent of genome editing has transformed the therapeutic landscape for
several debilitating diseases, and the clinical outlook for gene therapeutics has never been
more promising. The therapeutic potential of nucleic acids has been limited by a reliance on
engineered viral vectors for delivery. Chemically defined polymers can remediate
technological, regulatory, and clinical challenges associated with viral modes of gene
delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal
biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing
immune response and cellular toxicity. While polymeric gene delivery has progressed
significantly in the past four decades, clinical translation of polymeric vehicles faces several
formidable challenges. The aim of our Account is to illustrate diverse concepts in designing
polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy.
Here, we highlight several classes of polymers employed in gene delivery and summarize the
recent work on understanding the contributions of chemical and architectural design
parameters. We touch upon characterization methods used to visualize and understand
events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that
interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric
vehicles for gene therapy.
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1. INTRODUCTION

Molecular biology tools that remediate genetic defects have
steadily grown in their capabilities, with the evolution of
nucleic acid therapy tools such as meganucleases,1 trans-
posons,2 transcriptor activator-like nucleases (TALENS),3

ribonucleic acid (RNA) silencing,4 clustered regularly inter-
spersed palindromic repeats (CRISPR) gene editing,5 base or
prime editing,6,7 and other innovative editing platforms.8 In
addition to the ability to treat many genetic diseases such as
Leber’s congenital amaurosis, Duchenne’s muscular dystrophy,
beta thalassemia, or cystic fibrosis, researchers are slowly
uncovering the genetic basis of many acquired afflictions such
as cancer, type 2 diabetes, Alzheimer’s, and age-related macular
degeneration. Vaccine development is also increasingly relying
upon delivery of deoxyribonucleic acid (DNA), RNA, or
antigens. Many of the aforementioned systems involve
systemic infusion or direct tissue administration; however,
cellular therapies involving induced pluripotent stem cells and
chimeric antigen receptor T-cells9 have also come to fruition
and require ex vivo genome editing, further expanding the
therapeutic scope of gene therapy. Indeed, several gene therapy
clinical trials have been progressing rapidly with landmark
successes being reported in therapies focused on CRISPR/
Cas910−12 and in the development of mRNA-based vaccines
for severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).13

Despite the enormous promise held by gene therapy to solve
pressing problems in human health, we must contend with
economic and engineering barriers to their clinical translation.
To deliver therapeutic nucleic acids during in vivo admin-
istration as well as ex vivo applications, engineered viral
vectors, especially adeno-associated viruses (AAVs), are
employed by default.14 Over the years, clinicians have
perfected approaches to optimize viral capsids to deliver
payloads efficiently while minimizing toxicity and preventing
adverse events associated with the innate immune system.
Despite these efforts to reduce the mutagenic and immuno-
genic risks originating from viral vehicles, fatal responses to
virus administration have been recorded in patients undergoing
experimental treatments for Duchenne’s muscular dystrophy
and X-linked myotubular myopathy.15,16 The treatment
regimens for these diseases require extremely high (and
sometimes repeated) doses of viral vehicles, increasing the risk
of adverse events. Beyond their non-ideal safety profiles,
engineered viral vehicles pose financial and logistical challenges
during scale-up and mass-manufacturing, resulting in both
exorbitant product costs and long wait-times for production.17

The need for nonviral delivery methods is widely acknowl-
edged by both clinicians as well as biotechnologists in the
nascent gene therapeutics industry.18,19 Chemically defined
materials can be easily scaled up, made available off-the-shelf,
readily formulated, and stored without the need for technical
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expertise or access to refrigeration. The recent approval of two
lipid-based mRNA vaccines for the novel coronavirus, SARS-
CoV-2, have sparked renewed interest in non-viral gene
delivery platforms. While adenoviral and lipid-based delivery
approaches have both yielded successful vaccine candidates,
there is a dire need for nanomaterial platforms that can address
challenges in affordability and rapid world-wide distribution,
especially in the developing world where infrastructural
deficiencies exist in the cold chain.20

Because of their versatility and multifunctionality, polymeric
biomaterials have emerged as viable gene carriers.21,22

Advances in synthetic methodologies, particularly controlled
radical polymerization, have allowed researchers to impart
desired properties to polymeric carriers by investigating diverse
monomer functionalities and polymer architectures. Although
our knowledge of intracellular mechanisms involved in
polymeric gene delivery remains incomplete, researchers have
developed creative ways to characterize and understand
interactions between polymers, nucleic acid cargoes, and
cellular targets. The field has gradually been making progress
towards clinical translation, and the next decade promises to be
an exciting one for polymeric vectors.
We note that synthetic methodologies along with architec-

tural and chemical design aspects for polymeric vehicles form
the focus of our Account. Hence, we redirect readers to
excellent reviews focusing on related classes of biomaterials
such as polypeptides,23 dendrimers,24,25 nanogels,26,27 gra-
phene-based materials,28 poly(ethylene imine) (PEI), chitosan,
poly(L-lysine) (PLL), and hydrogels for sustained delivery.29

Since lipid nanoparticles are outside the scope of our Account
we point out some reviews focusing on lipid-based delivery
approaches.30−32 We would also like to highlight payload-
specific reviews focused on short interfering RNA
(siRNA),33,34 messenger RNA (mRNA),35,36 and a slate of
recent reviews highlighting delivery challenges involved in
CRISPR/Cas9 editing.19,29,37−44 Since Chemical Reviews has
published two in-depth reviews on polymeric gene delivery45,46

in the past two decades, we will only briefly discuss inorganic
nanoparticles, PEI, PLL, chitosan, dendrimers, and polypep-

tides, with references restricted to the most recent literature
covering the subject. Given the rich, decades-long history of
this field, our Account has been preceded by a wealth of review
articles that have also offered critical insights on polymer-
mediated gene delivery.47−52 In this contribution, our goal was
to capture the most recent developments in the field, to survey
a broad variety of polymer design approaches along with
clinical successes in a balanced manner, and to offer conceptual
overviews that are of interest to seasoned investigators and
novice researchers alike.
Through this Account, we aim to offer the reader a holistic

view of significant developments and essential material design
concepts in the polymer-mediated transfer of nucleic acids.
Our effort encompasses several disciplinary perspectives,
including organic synthesis, macromolecular chemistry, and
materials engineering; it covers diverse classes of polymeric
materials, from free polymer chains to cross-linked hydrogels
and polymer coatings. We begin the Account by outlining
physiological barriers to delivery that must be traversed by
polymeric vehicles to deliver their payload. The second section
will present a detailed overview of key design motifs used in
polymeric vehicles, paying special attention to chemical and
architectural design features. We will discuss how precise
design, chemical innovation, and controlled synthesis of
polymeric vehicles have come together to impart powerful
features such as stimuli-responsiveness and resistance to
protein fouling. Subsequently, we will take a deep dive into
the synthetic toolkit commonly deployed by polymer chemists
to access interesting polyplex properties, with a focus on click-
chemistry approaches and post-polymerization modifications.
The Account will then transition to discussing the physical
aspects of gene delivery and focus on how engineering
interventions can resolve kinetic limitations in polyplex
assembly. We will briefly describe alternative polymer
platforms that address gene delivery challenges from a polymer
processing rather than a polymer chemistry perspective. Our
Account will conclude by examining clinical success and future
research directions for polymer-mediated gene delivery and by

Figure 1. Schematic illustrating the endogenous pathways through which various nucleic acid payloads such as DNA, splice-switching
oligonucleotides (SSOs), mRNAs, and ASOs are processed. Reprinted with permission from ref 45. Copyright 2015 American Chemical Society.
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suggesting profitable avenues of research for aspiring
investigators.

2. BIOLOGICAL CHALLENGES RELEVANT TO
POLYMER-MEDIATED NUCLEIC ACID DELIVERY

A key driving force for the design of polymers for gene delivery
is the incorporation of material properties that aid nucleic acids
in overcoming specific biological barriers to gene delivery. In
this section we will first describe various therapeutic nucleic
acids and the molecular biology principles underlying their
functioning, highlighting their unique properties, challenges for
delivery, and uses. We briefly describe commonly employed
physical strategies to introduce nucleic acids within cells,
noting that these approaches are mostly restricted to ex vivo
applications. Then, we review biological barriers that are
unique to gene delivery, paying special attention to both
extracellular (or systemic) barriers as well as intracellular
barriers that are encountered by therapeutic nucleic acids as
they travel to targeted cells where gene expression must be
achieved. While we do not propose solutions to overcome
these barriers in this section, we believe that a basic
understanding of the biological basis for polymer-mediated
gene delivery is essential to engineer synthetic strategies.

2.1. Types of Nucleic Acid Cargoes and Their Biological
Mechanisms

Polymeric vehicles can be assembled with various nucleic acid
modalities varying widely in their therapeutic application, the
design constraints accommodated by the polymeric vehicle,
and the desired time frame for therapeutic effects, that is,
whether we require permanent changes to the genome or
transient expression or silencing of targeted proteins. While all
of the cargoes described in the section vary in their size,
topology, and mechanism of action (Figure 1), all of them are
amenable to being packaged with synthetic polymers to form
therapeutically useful nanoassemblies called polyplexes
through polyelectrolyte complexation.
2.1.1. Plasmids (pDNA). Plasmids are the most dominant

nucleic acid cargoes explored in the gene delivery literature.
These are circular double-stranded DNA molecules that are
replicated inside bacteria separate from chromosomal DNA.
Along with their utility in cloning DNA fragments and
producing large quantities of proteins in culture, plasmids have
been widely used as vectors in gene therapy.53 The two
primary portions of plasmids are (1) the bacterial backbone,
which contains an antibiotic resistance gene and origin of
replication for production in bacteria, and (2) the expression
cassette, which is the transcriptional fragment containing the
gene of interest and regulatory sequences.54 The expression
cassette can encode therapeutic RNAs or proteins, and if
successfully delivered to the nucleus of the target cell,
endogenous cellular machinery can produce the therapeutic
construct in large quantities.53 Unlike some other nucleic acid
payloads, pDNA requires nuclear entry to be effective, placing
additional constraints while designing gene delivery vehicles.
Delivery efficiency can also be improved by reducing the
plasmid size through the removal of the bacterial backbone,
forming minicircles or minivectors.55 Once they reach the
nucleus, plasmids and mini DNA vectors do not integrate into
the genome, so expression of the transgene is transient and will
diminish over time, especially as the cell divides.56 Plasmids are
still widely used for transient gene delivery applications due to
the ability to accommodate large gene payloads, their ease of

construction, low production cost, and resistance to degrada-
tion.56

2.1.2. mRNA. An alternative method to achieving transient
gene expression in target cells is through the delivery of
synthetic messenger RNA (mRNA).57 One major advantage of
using mRNA as a therapeutic payload is that it is readily
translated in the cytoplasm and does not need to translocate
through the restrictive nuclear barrier. For this reason, mRNA
can be expressed more readily than pDNA in non-dividing
cells.58 The biggest concern with mRNA as a gene delivery
vector, however, is its relative instability to RNase degrada-
tion.57 To address this concern, significant progress has been
made in producing synthetic mRNAs that are more resistant to
degradation.59 The cap, 5′ and 3′ untranslated regions, coding
region, and poly(A)-tail are all elements of natural mRNA that
are present in synthetic mRNA, and all have been optimized
for increasing stability. For example, synthetic caps, called anti-
reverse cap analogues, have been developed that are resistant
to decapping enzymes while maintaining translation effi-
ciency.60 Another concern surrounding mRNA is the innate
immune response that foreign mRNA can elicit.61 Some ways
to reduce this immune response include modifications to the
structure of the nucleic acid base (such as replacing N1-
methylpseudouridine for uridine62,63) or 2′-O-methylation.64

Such improvements in synthetic mRNA stability and
immunogenicity have helped increase its popularity as a
transgene vector.65

2.1.3. Antisense Oligonucleotides (ASOs) and RNA
Interference (RNAi). Along with nucleic acids that encode for
genes, there is a critical need for delivery vehicles that can
deliver synthetic nucleic acid oligomers that can induce gene
silencing.66 These include ASOs and RNAs for RNAi. ASOs
are short (∼20 bp), single-stranded oligodeoxynucleotides
(ODNs) that can bind to a target mRNA to silence its
expression. When the ASO binds to the target mRNA via base
pairing, the RNA-DNA hybrid acts as a substrate for RNase H
leading to the degradation of the target mRNA.67 ASOs can
also bind the targeted RNA and block translation without
inducing its degradation (steric-blocking oligonucleotides) or
modulate the splicing of the RNA (splice-switching oligonu-
cleotides).68 Similar to ASOs, several types of therapeutic
RNAs utilize RNAi, which is an innate biological process that
inhibits gene expression.69 Endogenously, eukaryotes regulate
mRNA translation by producing microRNAs (miRNAs) that
bind to cytosolic RNAi enzymes to form an RNA-induced
silencing complex (RISC). When bound as an RISC, miRNA
can base-pair to mRNAs complementary sequences and either
inhibit containing complementary sequences and either
inhibits translation or promote degradation of the mRNA.70

Similarly, small interfering RNAs (siRNAs) are fragments of
double-stranded RNA (ranging between 15 and 30 bp) derived
from exogenous RNA that can use RISC to bind and cut
mRNAs of specific sequences to inhibit translation.71

Improved siRNA constructs have overcome initial setbacks in
toxicity and efficacy and have recently earned approvals from
the Food and Drug Administration (FDA), re-invigorating
their status as impactful therapeutic drugs.69

The nucleotides in ASOs and synthetic RNAs for RNAi are
chemically modified to impart resistance to degradation,
improve immune system tolerance, and enhance binding
selectivity.69,72 Some common modifications of the phospho-
diester backbone include phosphorothioate DNAs, phosphor-
odiamidate morpholinos, and peptide nucleic acids.
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Some common 2′ substitutions of the ribose sugar include:
2′-O-methyl, 2′-O-methoxyethyl, 2′-F, and 2′4′-locked nucleic
acid.69,72 An additional benefit of ASOs and synthetic RNAs
for RNAi is the fact they impart their gene silencing effects in
the cytoplasm, so nuclear delivery is not necessary. Similarly to
mRNA, though, these constructs still greatly benefit from gene
delivery vehicles that stabilize them against degradation,
promote cellular internalization, and allow for their entry
into the cytoplasm.66,73 Other therapeutic nucleic acid
constructs for gene silencing that can be delivered with
polymer-based gene delivery vehicles include ribozymes,
DNAzymes, and antagomirs.74−76

2.1.4. Genome Editing. The aforementioned nucleic acids
impart transient effects on gene expression, and continued
modulation of gene expression with these cargoes requires

multiple administrations. Many gene therapies are focused on
permanently altering the genome of target cells within a patient
in a process known as gene editing. These therapeutic
strategies utilize nucleic acid and protein-based machinery,
the cellular delivery of which can be mediated by polycations.
Nonviral genomic insertions of genes can be achieved with the
delivery of DNA transposon systems such as Tol2, piggyBac,
and Sleeping Beauty.2 More recently, however, gene therapy
strategies have embraced technologies that can achieve
genomic manipulations, such as gene insertions and knockouts
with greater precision. The most common nonviral gene
editing platforms include zinc finger nucleases, transcription
activator-like effector nucleases (TALENs), meganucleases,
and the CRISPR/Cas9 system.77 These nuclease systems
induce a double-strand break (DSB) in a precise location of

Figure 2. (A) Mechanism of the CRISPR-Cas9 system. Guide RNA recognizes and binds to the target genomic locus, subsequently directing the
Cas9 protein to produce a double-strand break in the DNA. The severed DNA can now undergo two types of repair, non-homologous end joining
or homology-directed repair. (B) Summary of delivery strategies used for CRISPR/Cas9 editing. Strategy I employs a plasmid to encode both the
Cas9 protein and the single guide RNA. Strategy II uses a mixture of Cas9 mRNA and single guide RNA. Finally, the Cas9 protein can be delivered
directly after annealing with the single guide RNA to form ribonucleoprotein complexes (Strategy III). Reprinted with permission from ref 79.
Copyright 2017 Elsevier.
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the genome, which stimulates endogenous cellular repair
machinery. Repair of the DSB can occur through non-
homologous end-joining (NHEJ) or homology-directed repair
(HDR) as depicted in Figure 2A. The NHEJ pathway ligates
the broken ends and often introduces insertions and/or
deletions that can disrupt genes at the site of the break (knock-
out). In contrast, the HDR pathway can repair the break by
using a DNA template containing a homologous sequence, and
by doing so, the repair can lead to the insertion of an
exogenous gene of choice (knock-in).78 Variations of genome
editing with Cas-based derivates are being developed to
address other challenges in gene editing at a rapid pace.8

The delivery of nucleic acid-based constructs is required for
all of these editing strategies to occur. In the case of the
canonical HDR-based gene insertion with CRISPR/Cas9, a
ribonucleoprotein, consisting of the guide RNA (sgRNA) and
Cas9 protein, must be delivered to the nucleus to induce a
DSB concurrently with the delivery of a template DNA. The
template DNA can be delivered via a plasmid or single-
stranded oligonucleotide (ssODN), while the components of a
ribonucleoprotein can be delivered directly or expressed from a
plasmid or mRNA (Figure 2B).40 Exemplified by this case,
delivery requirements for these sophisticated editing systems
are demanding, and there is an urgent need for efficient gene
delivery strategies in order to achieve the desired outcomes.40

Polymer-based delivery platforms are well-suited for the
concurrent delivery of these large constructs. A sophisticated
polymer-based design is required to help this cargo overcome
the extracellular and intracellular barriers to achieve efficient
delivery and editing.80

We summarized key features of the most widely used nucleic
acid cargoes in this section. We also note the emergence of
payload systems such as microRNA,81 self-amplifying or
replicon RNA,82,83 base editor proteins,6,8 prime editing,7

and redirect the reader to more detailed articles discussing
these molecules.

2.2. Physical and Chemical Methods of Delivery

There are several categories of non-viral gene delivery vectors,
each presenting advantages and disadvantages with their
application. Physical methods of delivery achieve translocation
of hydrophilic macromolecules into the intracellular space by
transient permeabilization of the cellular membrane via
mechanical means.84 These processes include microinjection,
particle bombardment, electroporation, magnetofection, sono-
poration, photoporation, mechanical deformation, and hydro-
poration.84 Most of these physical methods are most effective
for the transfection of cells in culture (in vitro) or of localized
tissue in vivo. In addition, they often require specialized
equipment. Alternatively, gene delivery can be achieved using
chemical carriers that typically bind the nucleic acid cargo and
facilitate its intracellular uptake and delivery. Although the
chemical diversity of these systems is vast, chemical carriers
can generally be categorized as inorganic, peptide, lipid, or
polymer-based systems.85 Examples of materials used for
inorganic gene delivery particles include calcium phosphate,
silica, gold, magnetic metals, carbon nanotubes, and quantum
dots, among others. These inorganic nanoparticles can vary
greatly in size, shape, and surface chemistry, and they are often
functionalized with polymeric or bioactive compounds to tune
their biological properties.86

Alternatively, nucleic acids can be conjugated or electro-
statically bound to biologically-derived compounds, such as

peptides, to promote nucleic acid delivery. Peptides for gene
delivery can be broadly categorized as either cell-penetrating
peptides, targeting peptides, endosome disrupting peptides, or
nuclear localization signal peptides. While providing effective
methods to overcome certain biological barriers, these peptides
often suffer from short circulation half-lives, poor stability, and
low DNA binding affinity.87 The most widely utilized non-viral
gene delivery vehicle is lipid-based vesicles. Lipids, which
consist of a hydrophilic head and hydrophobic tail, can form
bilayer vesicles called liposomes, and if lipids with cationic
heads are present in the lipid mixture, nucleic acids can
electrostatically bind and become encapsulated in the liposome
to form a lipoplex. These lipoplexes are often mixtures of
charged lipids, uncharged lipids, and cholesterol that can
promote fusing and lipid exchange with endogenous cellular
membranes. Lipoplexes can also be functionalized with PEG-
based coatings or bioactive compounds to improve transfection
efficiency, stability, or promote tissue-specific targeting. Each
of these non-viral methods has been developed over the last
several decades in parallel to polymer-based gene delivery, and
each method has its own advantages and disadvantages for any
given gene delivery application.

2.3. Extracellular Barriers

Polymer-mediated gene therapy promises to address limi-
tations associated with both viral vectors and physical gene
transfer methods, albeit not without its own series of
extracellular and systemic biological barriers (Figure 3).88−90

The vectors must evade the reticuloendothelial system (RES)
that would otherwise rapidly eliminate biologically relevant
materials from the body. Additionally, there are multiple
physiological barriers nonviral vehicles must cross, based on
the route of administration (intravenous/mucosal injection,
topical application, and oral delivery). Formulation of the
polyplexes must also be taken into consideration as, at higher
salt concentrations, the electrostatic repulsion between the
cationic polyplexes and anionic DNA backbone is screened by
electrolytes, leading to a decrease in colloidal stability and a
propensity for aggregation.43 Aggregation of these polyplexes
can also occur in the blood (particularly due to plasma proteins
and erythrocytes), which can also lead to an unsuccessful
localization of the vector to the desired tissue and RES-
mediated elimination.91 Furthermore, upon systemic delivery
of these vehicles in vivo, other barriers include phagocytosis of
the nanoparticle, enzymatic (DNases, RNases, proteases) and/
or hydrolytic degradation, and potential activation of an
immune system via a toll-like receptor (TLR)-mediated
response or cytokine induction. Each of these barriers will be
further discussed below, and circumvention of these barriers
will be discussed throughout this Account.

2.3.1. Serum-Induced Aggregation. Like any other
biomaterial introduced into a physiological environment,
polymeric gene delivery vehicles are susceptible to non-specific
protein adsorption (or biofouling), and the formation of an
opsonin-enriched protein corona marks them out as a target
for clearance by the immune system.92 Surprisingly, the
challenges associated with non-specific protein adsorption are
not unique to in vivo delivery, since serum is ubiquitously used
in the cultivation of both immortalized cell lines as well as the
maintenance of primary cells. Unfortunately, serum contains
numerous proteins, which can adsorb onto the polyplex
surfaces through electrostatic, hydrophobic, or other inter-
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actions, ultimately causing these colloidal systems to aggregate
severely.93

Nanoparticles designed to condense the negatively charged
backbone of nucleic acids typically consist of cationic lipids or
polymers. Although this positive charge allows an efficient
complexation with nucleic acids, these polycations tend to be
sequestered by proteins present in the serum or by other
components of the extracellular matrix.94 The association with
plasma proteins (albumin, lipoproteins, macroglobulin) is the
primary mechanism by which the reticuloendothelial system
recognizes circulated nanoparticles. Immune recognition
initiates a cascade of events that redirect injected polyplexes
to the liver or spleen, thereby preventing the vehicle from
reaching its target.95 In addition, the interaction with the
serum proteins and nanoparticles can greatly alter their
diameter and zeta potential, ultimately influencing its
biodistribution profile and compromising organ-specific
targeting.96,97

Another serious consequence of protein−polyplex inter-
actions is the displacement of the nucleic acid by negatively
charged proteins through a competitive binding, causing a
premature release and disassembly of formulated polyplexes.98

Proteoglycans and glycosaminoglycans are also abundant
within serum-rich environments and can displace nucleic
acids from polyplexes through a competition for cationic

binding partners, triggering a polyplex disassembly.99 Recent
work has shown promise in enhancing the transfection
efficiency of polymeric gene delivery vehicles even in the
presence of high proportions of serum (up to 50%). Among a
wide variety of strategies, methods to combat serum instability
have included stealth nanoparticle coatings, such as the
incorporation of poly(ethylene glycol) (PEG),100 fluorina-
tion,101,102 phosphonium-containing polymer blocks,103 and
the incorporation of other hydrophilic stealth functionalities
such as carbohydrate moieties.104,105 These chemical design
strategies are discussed in detail in Section 3.

2.3.2. Susceptibility to Enzymatic Degradation. An
additional deleterious effect of serum exposure is the rapid
degradation of nucleic acids through the action of DNAse and
RNAse enzymes present in serum. Naked RNA and DNA are
known to rapidly degrade via serum nucleases in vivo; thus,
nonviral vectors need to prolong the half-life of DNA in
circulation. Chemical modifications to the nucleobase furanose
sugar or phosphate backbone have been a common method by
which researchers have circumvented this barrier (Section
2.1.3).106 Additionally, delivery via local injections minimizes
the time spent in circulation (including contact with serum
proteins) and thus can lead to improved gene delivery.
Unfortunately, this cannot be applied universally and has only
seen utility for the treatment of certain cancers.90 The
propensity for DNA/RNA to be degraded by serum nucleases
can not only be attenuated by complexation via cationic
delivery vehicles but also modification of these vehicles with
cell-specific targeting moieties can direct the cargo to the tissue
of interest.43

2.3.3. Immune Activation. The immune system is a
formidable extracellular barrier that triggers potent non-specific
defense mechanisms immediately upon introduction of
polyplexes into the organism. While the innate immunity is
more pronounced in the case of viral vectors (except some
adeno-associated viruses),95 nonviral vehicles and their macro-
molecular cargo can trigger an innate immune response as well.
Surprisingly, although poly(ethylene glycol) has long held the
status of a “biocompatible” material, recent reports suggest that
PEG elicits an accelerated blood clearance (ABC) response, as
well as a complement activation-related pseudoallergy response
(CARPA). We direct readers to Section 3.4.1, which discusses
in detail the immunogenic effects of PEG in gene delivery. On
the one hand, activation of the innate immune system leads to
the recruitment of vascular endothelial cells and platelets,
inflammatory cytokine production, and macrophage cell death.
On the other hand, previous exposure to exogenous material
causes the adaptive immune system to generate an antigen-
specific response in the form of neutralizing antibodies, which
clears the polyplexes from circulation and prevents successful
re-administration.107 The innate ability for both DNA and
RNA to activate the immune system upon a systemic injection
in vivo can represent a substantial obstacle during gene
delivery.108 These side effects include toxicity associated with a
TLR-mediated inflammatory response and cytokine release.
Additionally, changes to the chemical composition of the
delivery vehicle and size, aggregation state, and shape and
charge of the nanoparticle can provoke varied responses from
the immune system.109 These factors necessitate careful design
of nanoparticles in order to side-step anti-polyplex immune
responses and ensure the safety and performance of polymeric
vehicles. While immune responses to viral vectors comprise
various steps (innate immunity, adaptive immunity, and

Figure 3. Extracellular and intracellular barriers to nonviral gene
delivery vehicles. Reprinted with permission from ref 88. Copyright
2014 Springer Nature.
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humoral and cell-mediated responses), we restrict our
discussion to those most relevant to polymers: toll-like
receptors and complement activation.
TLRs are a class of membrane-bound receptor proteins that

play a key role in the innate immune response. Each type of
TLR receptor can recognize specific compounds common to
microbial pathogens. TLRs allow immune cells, such as
macrophages and dendritic cells, to mount rapid and tailored
immunological responses, such as releasing inflammatory
cytokines and anti-viral interferons, to attack the microbial
invaders.110 Humans have TLRs that can bind a variety of
foreign nucleic acids belonging to viruses or bacteria. For
example, TLR3 binds to dsRNA, TLR7/TLR8 binds to
ssRNA, and TLR9 binds to ssDNA (especially if it contains
unmethylated CpG motifs common to bacterial DNA).111 This
ability of TLRs to sense exogenous nucleic acids, however, can
induce immune responses to therapeutic nucleic acids. While
in some cases, such as vaccines or cancer therapies,
immunostimulation may be desired, this effect is usually
deleterious to most gene therapies.112 For example, it is well-
documented that the delivery of siRNA can elicit an excessive
cytokine release and inflammation partly through TLR-
dependent pathways. It has been found that common chemical
modifications used to improve siRNA stability can help reduce
this immune activation.109 The choice of gene delivery vehicle
can also affect the immunogenic properties of nucleic acids. In
the case of siRNA complexes, some vehicles, such as many
lipid-based systems, do not inhibit the siRNA from stimulating
the immune system,109 while some polymeric vehicles allow
siRNA to effectively evade immune activation.113 In addition, it
is possible the vehicle itself may activate TLR-based defenses.
One study found that PEI within PEI-based siRNA polyplexes
acted as a TLR5 agonist, which was used to promote
therapeutic anti-tumor immune activation.114 Such findings
suggest that the polymeric components of polyplexes must also
undergo extensive testing to determine if they have unforeseen
immunostimulatory properties.
The complement system is another component of the innate

immune system that must be considered in assessing the
immunostimulatory properties of gene delivery vehicles.
Complement proteins in blood serum can recognize foreign
material either directly or through antibody binding and, upon
doing so, can initiate a proteolytic cascade within the
complement system that ultimately triggers inflammation,
phagocytosis of the foreign material, and rupturing of bacterial
membranes. The three activation pathways of the complement
system are known as the classical pathway, alternative pathway,
and lectin pathway.115 Along with avoiding hemolysis or
altering blood coagulation, nonviral gene delivery vehicles
must not activate the complement system to be considered
hemocompatible.116 Complement activation has been ob-
served for liposomes, naked phosphorothioate oligonucleo-
tides, and polyplexes, as well.112,116,117 While naked poly-
cations such as PLL, poly(amidoamine) (PAMAM) den-
drimers, and PEI can all strongly activate the complement
system, this activation is greatly diminished by charge
neutralization with nucleic acid cargo.117−119 In addition, it
was found that complement activation was strongly dependent
on polymer chain length, with cationic oligomers showing a
weak activation.117,118 No complement activation was seen for
cyclodextrin-based cationic oligomers complexed with siRNA,
which were administered to non-human primates.120 Inves-
tigations such as this show how the careful formulation of

polyplex systems can successfully avoid complement activation
in vivo.

2.3.4. Challenges in Organ Targeting. Genetic cargoes
are not uniformly distributed throughout the body. The liver,
for instance, is a common location for nanoparticles to
accumulate due to the clearance of circulating nanoassemblies
by the liver sinusoidal endothelial cells, a highly vascularized
structure that is a key part of the reticuloendothelial system.121

The liver is also responsible for the metabolism and
detoxification of xenobiotics as well as reabsorption of
chylomicrons, which have similar dimensions to synthetic
nanoparticles.122 Therefore, targeting gene delivery vehicles to
organs other than the liver represents a considerable challenge.
Siegwart and coworkers engineered a strategy to reliably
deliver mRNA payloads to extrahepatic organs by tuning the
surface charge distributions of lipoplexes.123 A similar strategy
could be developed with polymeric vehicles to improve
extrahepatic organ-specific delivery. While local or regional
administration of polyplexes simplifies some of the complex-
ities presented by organ-targeting, they are still beset with
operational difficulties. For instance, skeletal muscle tissues are
amenable to intramuscular injections, yet these highly
vascularized tissues are often surrounded by other cell types
(endothelial, epithelial, and adventitial cells), which makes
DNA transfer inaccessible unless the tissue is damaged124 or if
minimally invasive polyplex injections are performed directly
into the muscle.125 Even though skeletal muscle is often
injected locally or electroporated to promote transfection,
smooth muscle layers and vasculature are often too thin for
reliable injections.126 Hence, electroporation or ex vivo
transfection with subsequent grafting to the host is required,
which can limit efficacy. Organ targeting with systemically-
administered polyplexes impose stringent design constraints,
requiring precise modulation of chemical and physical
properties of the polymeric vehicle. Additionally, nanoparticles
that extravasate from the blood must reach cells of interest
through the interstitial space, which is a viscous, dynamic, and
complex matrix of biomacromolecules. Larger nanoparticles
(larger than 60 nm) cannot diffuse through the extracellular
matrix of most tissues.127,128 Mitragotri and coworkers have
written a comprehensive review of the penetrative propensity
of nanoparticles across cell and tissue barriers.129

Improved targeting of polyplexes can be achieved by the
modification of parameters such as size, charge, or the
incorporation of targeting ligands to deliver nucleic acids to
remote destinations.130 For targeting to be effective in
systemically-injected polymeric vehicles, polyplexes often
need to accommodate both stealth functionalities (to reduce
non-specific interactions with serum proteins) and targeting
ligands (for cell-specific binding).131,132 How do we reduce
non-specific interactions with proteins and yet ensure a
multivalent display of specific cell-binding moieties that bind
to target cells with high selectivity and affinity? We discuss
methods to incorporate these functionalities in a comple-
mentary fashion in Section 3.4.

2.3.5. Cytotoxicity. Cellular toxicity is a key performance
metric for gene delivery materials. For a gene delivery vehicle
to be efficacious, transfection efficiency must ideally be
maximized, and cytotoxicity minimized; otherwise, high
cytotoxicity can result in tissue/organ damage in patients.
However, highly efficient polymeric gene delivery vehicles
often exhibit high cytotoxicity, a trade-off often seen with gene
delivery vehicles. Thus, most gene delivery systems attempt to
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strike a fine balance between achieving efficient transfection
with limited toxicity. Note, that, since cytotoxicity is a broad
term for cell death, this concept can be split into more specific
categories, including apoptosis, necrosis, necroptosis, and
autophagy, encompassing both programmed and unprog-
rammed mechanisms.133 However, discussions about specific
cytotoxicity pathways are beyond the scope of this Account.
Cationic polymers/moieties have been implicated as a major

contributor to cellular toxicity, likely as a result of their
interactions with negatively charged membranes and pro-
teins.134,135 As an example, cationic PEI-based polyplexes have
been observed to exhibit varying levels of cytotoxicity,
correlated with factors such as molecular weight,136 polymer
length,137 permeation of the cellular and/or nuclear mem-
branes,138 mitochondrial interactions/depolarization,139,140

and the presence of free polymer chains.138 In particular,
there is evidence that mitochondrial integrity is strongly
associated with polyplex cytotoxicity mechanisms since
depolarization will disrupt the redox homeostasis of the
cell.139,140 Notably, the addition of hydrophilic functionalities
such as PEG141 or carbohydrate moieties142 to cationic
polymers have been shown to ameliorate toxicity during
transfection. The reduced cytotoxicity of these polymeric
delivery vehicles is potentially due to their lower nuclear
permeability.143 Shorter glycopolymers have also been shown
to induce cell death more slowly than longer polymers.137 It
has also been suggested that polymer degradation products
may serve as a source of toxicity (e.g., through the generation

of reactive oxygen species), though this hypothesized
mechanism is dependent on the polymer structure.137

In this section, we provided snapshots of extracellular
barriers, ranging from immune responses to reticuloendothelial
system clearance, serum-induced aggregation, cell death, and
targeting challenges. Balancing the conflicting design require-
ments imposed by these biological phenomena is a steep
challenge that demands multifunctionality, precise design, and
adaptability, all of which are hallmarks of polymeric materials.

2.4. Intracellular Barriers

Irrespective of whether they are deployed for in vivo or in vitro
settings, all polymer-based gene delivery vehicles must
overcome a series of intracellular barriers to successfully
deliver their nucleic acid cargo. The series of barriers that must
be overcome depends on the ultimate destination of the
nucleic acid cargo; RNA-based cargoes only need to reach the
cytoplasm to perform their therapeutic function, while
plasmids and gene-editing constructs must be trafficked to
and enter the nucleus.144 The obstacles described in this
section are outlined in the general order in which they may be
encountered and include (1) cellular binding, (2) endocytosis,
(3) endosomal escape, (4) intracellular transport, (5)
unpackaging, and (6) nuclear uptake.22,145−147 The difficulty
in overcoming each of these barriers depends on many factors
including the type of polymer, nucleic acid identity, therapeutic
application, cell type, and pathway variations between/within
cells, just to name a few (Figure 4). A large body of research
has been amassed to determine how different polymeric

Figure 4. Possible endocytosis and intracellular trafficking pathways taken by polyplexes that represent intracellular barriers. While some cargo,
such as siRNA, only needs to reach the cytoplasm, other cargo, such as pDNA, must be trafficked to the nucleus. In addition to nuclear uptake, the
polymeric vehicle must shuttle the cargo during cellular binding, endocytosis, endosomal escape, intracellular transport, and unpackaging for a
successful transfection of a given cell type. Reprinted with permission from ref 146. Copyright 2018 Royal Society of Chemistry.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig4&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


vehicles overcome these barriers. PEI has been considered the
gold standard in polymeric gene delivery for over two decades,
presumably due to its ability to achieve endosomal escape
through the proton sponge effect (which is discussed in detail
in Section 2.4.3). PEI has served as the mechanistic model and
the impetus for the development of next generation amine-
containing polymers capable of escaping the endosome. As the
prototypical polymeric transfection reagent, the field has gone
to great lengths to understand the intracellular mechanisms of
PEI as a model. Therefore, the following section explores
intracellular barriers as studied through PEI-based models,
which serve as the basis for understanding the delivery
mechanisms of next-generation polymers as described in
subsequent sections.146,148 The focus on PEI shows the
challenges the field faces in conclusively determining intra-
cellular trafficking mechanisms. In addition, many of the
lessons learned from these mechanistic studies of canonical
polycations have been leveraged to create more sophisticated
polymer-based systems with improved abilities to overcome
these intracellular barriers.
2.4.1. Cellular Uptake. For polycationic gene delivery

vehicles that lack a targeting moiety for a specific receptor on
the cell surface, such as unfunctionalized PEI, the conventional
wisdom is that these cationic polyplexes bind to the cell surface
via non-specific electrostatic interactions.46 The negatively-
charged glycocalyx, which varies widely in composition and
density, consists of a brushlike layer of oligosaccharides, called
glycosaminoglycans, that are anchored to the cell surface as
proteoglycans and glycolipids. Several viruses are known to rely
on glycosaminoglycan binding for internalization and in-
fection.149 Polymeric vehicles that contain targeting moieties
aim to increase the specificity of gene delivery systems
primarily through their biodistribution. For example, specific
targeting is frequently achieved through the conjugation of
preexisting endogenous ligand−receptor interactions (for
instance, folate/folate receptor); however, these can come
with disadvantages such as non-specific binding to nontarget
tissue expressing the receptor, competing circulation of
endogenous ligands, or background from soluble receptors.130

Baldeschwieler et al. showed that proteoglycans were crucial
components for the binding and uptake of the PLL-based
polyplexes.150 Studies utilizing enzymatic degradation and
genetic knockout of glycosaminoglycans, among others,
supported the hypothesis that PEI also relies on binding to
proteoglycans, especially heparan sulfate, for internaliza-
tion.151−155 Behr et al. proposed a model of PEI polyplex
uptake that is dependent on binding to the most common form
of heparan sulfate proteoglycans called syndecans. Their work
suggested that the syndecans cluster and condense around the
bound polyplex, in a process aided by cholesterol, leading to
syndecan phosphorylation and actin-dependent engulfment of
the particle.152 Several studies, however, show that the role of
glycosaminoglycans in promoting PEI-based transfection is far
more nuanced. For example, Durocher et al. found that
different types of syndecans can have opposing roles in relation
to PEI-based gene transfection, with some syndecans causing a
reduction in gene expression.156 Some studies have shown how
glycosaminoglycans can be deleterious to successful trans-
fection in part by destabilizing the polyplexes.99,157 More
recently, work by James et al. suggests that the role of heparan
sulfate proteoglycans in mediating the successful transfection
with PEI has less to do with promoting electrostatic binding
but more through the ability of HSPGs to order lipid rafts and

promote hydrophobic interactions between the lipid rafts and
polyplexes.158 As exemplified by these studies, many
mechanistic underpinnings of PEI-based transfection are not
fully settled due to the myriad challenges in characterizing the
intracellular interactions of polyplexes. In this case, elucidating
the role of glycosaminoglycans in PEI uptake is made difficult
in part by the heterogeneity and variability of glycosaminogly-
cans on different cell types and tissues.145

2.4.2. Endocytosis. After it binds to the cell surface, a
polyplex must be internalized by the cell in order to deliver its
genetic cargo. Because of their large molecular weight and
charged surfaces, polyplexes are most often internalized
actively through endocytosis.159 The success of the trans-
fection for a particular cell type can depend on the endocytosis
pathway.160 The most well-characterized endocytosis mecha-
nisms, which include clathrin-mediated endocytosis, caveolae-
dependent endocytosis, macropinocytosis, and phagocytosis,
have been the most closely examined routes in regard to gene
delivery.161 Clathrin-mediated endocytosis is the main method
of internalizing extracellular and membrane components, and it
is accomplished by the formation of clathrin-coated pits (60−
120 nm in diameter)162 in an actin- and dynamin-dependent
manner. Caveolae are bulb-shaped invaginations (60−70 nm in
diameter) within lipid rafts that contain the structural proteins
cavins and caveolins.163 The density of caveolae on the cell
surface varies widely between cell types. Budding of caveolae is
dynamin-dependent and a highly regulated process, which
allows for the endocytosis of bound material and its trafficking
along classical endocytic routes, transportation to other
organelles, or even transcytosis.164,165 Macropinocytosis is a
non-specific, growth factor-induced method of endocytosis
that allows for the uptake of extracellular fluid in irregular-
shaped macropinosomes, ranging between 0.5 and 10 μm in
size, by actin-dependent evagination and ruffling of the plasma
membrane.164 In contrast to macropinocytosis, phagocytosis
(mostly employed by immune cells) requires a solid particle
(>0.5 μm in size) to initiate endocytosis.166

The contribution of less-characterized pathways to gene
delivery, including clathrin-independent pathways such as
CLIC/GEEC, flotillin-dependent, Arf6-dependent, and
RhoA-dependent endocytosis, is an active area of research.159

These endocytosis routes coexist within mammalian cells, and
while some cargo is internalized exclusively by one route, most
cargoes utilize multiple pathways.167

A variety of uptake pathway-specific inhibitors are available
that can assist in determining the primary endocytosis
pathways utilized by polyplexes.168,169 For example, chlorpro-
mazine and amantadine inhibit clathrin-mediated endocytosis,
filipin III and genistein inhibit caveolae-mediated endocytosis,
dimethylamiloride inhibits micropinocytosis, dynasore inhibits
dynamin, and cytochalasin D depolymerizes actin.170,171 The
contribution of each pathway toward the uptake for a specific
polyplex formulation can be determined by treating cells with
inhibitors (individually) and subsequently measuring the
internalization of polyplexes (e.g., using fluorescent tags).
These molecules are easy to incorporate into cell culture assays
and have been utilized in numerous polyplex studies.172−177

Unfortunately, these inhibitors are often non-specific and may
not entirely block one pathway, resulting in off-target effects
and potentially inducing cytotoxicity.147,169 As an alternative to
small-molecule inhibitors, methods such as RNA interference
have been utilized to target and downregulate the expression of
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specific pathway proteins, such as clathrin heavy chain and
caveolin-1, for the purpose of studying polyplex uptake.178

2.4.3. Endolysosomal Navigation and the Proton-
Sponge Hypothesis.With few exceptions, the endocytosis of
a given polyplex by any of the routes described above will lead
to an entrapment of the polyplex in the degradative
endolysosomal pathway and its exclusion from the cytoplasm.
Following endocytosis and its arrival at the early endosome,
polyplexes can be recycled back to the cell surface179 or be
carried forward into late endosomes (pH 6.0−4.8), which is
gradually acidified by vacuolar-type H+-adenosine
triphosphatase(V-ATPase) proton pumps. Late endosomes
eventually merge with lysosomes, whose acidic lumen (pH ≈
4.5) and high hydrolase content facilitate the degradation of
the cargo.180 Endosomal entrapment is a severe bottleneck in
gene delivery,146,181 and considerable energy has been devoted
to developing and modifying polymer-based systems to
overcome this barrier.46,147 Over two and half decades ago,
when the ability of PEI to promote efficient transfection was
discovered, it was proposed that PEI managed to avoid
endosomal degradation by acting as a “proton sponge” (Figure
5A).182,183 Ever since, the proton sponge hypothesis has served
as a theoretical basis for the development of polymeric vehicles
that can escape or endure endosomal entrapment. The theory
states that the amino groups of PEI, which have a broad
buffering capacity in the pH range of endosomes (pH 4−7),184
act as potent “proton sponges” during the ATPase-driven
acidification of endosomes. Buffering against this acidification
causes a passive influx of chloride ions that causes osmotic
swelling of the endosome leading to its disruption and
subsequent release of the polyplex.182 In addition, it was
postulated that, during this process, the polymer itself swells,
like a sponge, due to an increased charge−charge repulsion to
aid in endosomal rupture.183 This proton sponge theory has
been thought to apply to other polymers that exhibit broad
buffering capacities such as PAMAM185 and poly(N,N-
dimethylamino-2-ethyl methacrylate) (PDMAEMA).186 As
such, this theory is cited widely for explaining the efficacy of
new transfection vectors.
The results from more than two decades of work, however,

have not managed to verify the proton sponge hypothesis,
since supporting evidence for the mechanism has been mixed
and heavily debated. Mounting evidence is pointing toward
alternative mechanisms of PEI’s ability to escape endosomes,
including direct membrane penetration, which has been
examined in-depth in a review by Schubert et al. and
subsequently summarized here (Figure 5B).146 One key aspect
of the debate regarding the proton sponge mechanism is the
evidence tying buffering capacity to endosomal escape. While
studies have shown that having a buffering capacity contributes
to PEI’s ability to promote transfection,188−192 buffering
capacity alone does not serve as the sole parameter
contributing to endosomal escape and efficient transfection
efficiency. Another key point of debate revolves around the
accumulation of PEI in certain endolysosomal vesicles. It has
been observed that PEI polyplexes are found in early
endosomes and undergo acidification (pH ≈ 6), and some
studies have found that PEI polyplexes are trafficked to the
lysosomes,193−196 but others do not find this colocaliza-
tion.190,197 Schubert et al. suggest that the inconsistencies in
these studies of intracellular distribution are due to the
complexity and differences across trafficking fates of various
uptake mechanisms.146,198 In addition, while some studies have

observed endosomal buffering in line with the proton sponge
hypothesis,190,192,199 others have found a lack of buffering by
PEI in the endolysosomal system and have questioned the
mechanism.184,189,197 Lastly, doubt has emerged that the
osmotic pressures engendered by a proton sponge are enough
to elicit a rupture of the endosome. While some calculations
suggest that the expansion of endosomes by osmotic swelling
does not meet the critical threshold200 necessary to induce
rupture,184,201 another calculation202 suggests rupture is
possible only within a certain range of free polymer content
within the endosome.

2.4.4. Alternative Hypothesis 1: Direct Membrane
Permeabilization. Despite the controversy regarding its
mechanism, the burst-release of PEI polyplexes from endo-
somes has been observed directly.194,203,204 Interestingly, it was
observed that the endosome remained intact after releasing its
contents. This result suggests that the polyplex promotes

Figure 5. Possible mechanisms for the endosomal escape of PEI-
based polyplexes. (A) The proton sponge hypothesis suggests the
following steps: (i) Polyplexes buffer the endosome during its
ATPase-driven acidification process. (ii) This causes an influx of
protons and chloride ions, which increases the osmotic pressure. (iii)
The pressure buildup leads to a rupture of the endosome, allowing the
polyplex to escape. (B) An alternative theory of endosomal escape,
the membrane permeabilization theory, suggests a slightly different
mechanistic hypothesis: (i) Free PEI chains are present alongside the
polyplex. (ii) These molecules intercalate into the endosomal
membrane. (iii) Membrane defects and/or nano-holes are formed
that allow for the escape of the polyplex without a full rupture of the
endosome. Reprinted with permission from ref 146. Copyright 2018
Royal Society of Chemistry. (C) The retrograde transport hypothesis
posits that a caveolar transport of PEI-based polyplexes can eliminate
the need for endosomal escape. Reprinted with permission from ref
187. Copyright 2012 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig5&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


release not by a large-scale rupture or lysis, as suggested by the
proton sponge hypothesis, but through direct permeabilization
of the endosomal membrane22,204,205 (Figure 5B) in a manner
not dissimilar to the membrane-lytic mechanisms underlying a
viral infection.206 This membrane permeabilization that allows
for the leakage of proteins and dyes has been observed with
PAMAM dendrimers207−210 as well as PEI.211,212 The
membrane disruption caused by PEI may not only help with
endosomal escape but could also be the cause of its well-
known cytotoxicity.137,139,213

Although it has been suggested that the PEI polyplex itself
causes membrane penetrations,22,204 there is growing evidence
that it is actually free polymer chains not bound to the nucleic
acid cargo that is allowing for membrane penetration and
endosomal release.205,214 Many studies have demonstrated that
the presence of free PEI chains are critical in promoting gene
delivery.215−218 At the N/P ratios (the ratio of ionizable amine
groups to phosphate groups within nucleic acid payloads)
necessary for transfection, the majority of PEI polymer chains
(∼60−90%) exist as free polymers in solution219,220 and may
exist in an equilibrium between free and bound states, similar
to what has been observed with PAMAM dendrimers.221−224

Depending on its length, free PEI chains have been shown to
promote release from endosomes and even assist in the
translocation of genetic cargo through the nuclear mem-
brane.225 The solution behavior of free PEI is pH-depend-
ent,226 and its ability to destabilize the membrane barrier is
greatly enhanced at a low pH.227 In addition, since PEI has an
exceptional ability to interact with and translocate anionic
lipids,228,229 Won et al. suggests that the preferential ability of
PEI to perforate mature endosomes is due to their higher
anionic lipid content.230 They achieved direct visualization of
PEI adsorption and permeabilization of model lipid vesicles
consisting of a mixture of neutral and anionic lipids.230 Lastly,
Banaszak-Holl et al. quantified this permeabilization by free
PEI chains in patch clamp measurements of whole HEK293
cells. They concluded that PEI caused persistent nanoscale
hole formation via a detergent-like membrane disruption
mechanism (known as the carpet model), and its potency was
correlated to its charge density.231 Many supporters of the
membrane permeabilization mechanism of PEI hypothesize,
however, that the proton sponge effect may play a synergistic
role in assisting membrane permeabilization if it is indeed
occurring.204,214,232 It is also key to recognize that the
endosomal escape mechanism of any given polycationic
reagent may depend greatly on polymer composition and the
particular cell type being transfected, which makes universal
mechanistic claims exceedingly difficult.146 In conclusion, we
agree with Schubert et al. that, despite there being a popular
and long-standing explanation for the ability of PEI to escape
the endosome, two decades worth of research has failed to
verify that the proton sponge effect is the most critical
parameter for endosomal escape and improving therapeutic
nucleic acid delivery performance. Evidence is mounting that
endosome permeabilization by the direct interaction of PEI
chains with the endosomal membrane plays a critical role in
the endosomal escape of polyplexes and should play a featured
role in the prevailing mechanistic theory of its functionality.
2.4.5. Alternative Hypothesis 2: Retrograde Trans-

port Via the Golgi and the Endoplasmic Reticulum. It is
commonly observed that PEI polyplexes undergo both
c l a t h r i n - a n d c a v e o l a e - d e p e n d e n t e n d o c y t o -
sis.175,177,178,187,198,233−235 Most groups who observed this,

however, concluded that caveolae-dependent endocytosis is
either entirely178,198,234 or mostly accountable175,177,187,235 for
transgene expression. Although caveolae can interact with early
endosomes and partake in classical endocytic routes,165,236 it
has been shown that endocytosed caveolae are capable of
bypassing lysosomal compartments and directly merge with
organelles such as the Golgi and endoplasmic reticulum
(ER).163,237−240 The ER is contiguous with the inner and outer
membranes of the nucleus,241 and it has been shown that
several cargoes, such as proteins, can enter the nucleus upon
arrival at the ER.242,243 In the case of some toxins and viruses,
ER localization can contribute to cytoplasmic release.244 In
these cases, the efficiency of the caveolae-dependent delivery
has been attributed to the ability of caveolae-dependent
endocytotic vesicles to bypass the rapid degradation of the
endolysosomal system. In the context of polymeric delivery,
Sullivan et al. (Figure 5C) and Reineke et al. showed that PEI-
pDNA complexes that underwent caveolin-dependent endo-
cytosis could bypass endosomal degradation by retrograde
transport.187,235 It appears that retrograde transport can also
offer a compelling alternative to both the proton sponge and
the direct membrane permeabilization hypotheses.
Others, however, have found that fluid-phase endocytosis

(such as macropinocytosis) can be important for the uptake
and expression of PEI polyplexes as well.245,246 In addition,
Zhuang et al. found that PEI polyplexes can be endocytosed via
a route that is clathrin-independent, caveolin-independent,
dynamin-dependent, and flotillin-dependent.154 One reason
such discrepancies can arise is the preference of endocytotic
routes for certain size ranges and the heterogeneous size
distributions of PEI polyplexes.233,234,247−249 The route of
endocytosis is also strongly cell-type dependent,233,234,245 and
inhibition of one endocytotic route can lead to compensatory
increases in others, since cells are often employing multiple
endocytotic routes in tandem.177,198 As exemplified by PEI,
defining the endocytosis mechanism for any given polymeric
system is a challenge due to the intricacy, codependence, and
highly variable nature of endocytotic pathways within and
between cells.

2.4.6. Intracellular Transport. Although escaping the
endosome is an important barrier to overcome for all polymer-
based gene delivery, the timing of the escape is also an
important parameter to consider for some genetic cargo. In the
case of large DNA cargoes, escaping from endosomes far away
from the nucleus has been considered detrimental due to its
poor ability to reach the nucleus via diffusion.189 While small
oligo DNAs can diffuse through the cytoplasm efficiently,
diffusion of DNA greater than 250 bp is highly restricted in
cytoplasm, and plasmids greater than 3000 bp appear
immobile.204,250 The actin cytoskeleton plays a significant
role in inhibiting DNA motility.251 Therefore, it is thought to
be advantageous for DNA to stay within its endocytic vesicles
for long enough to use it as a shuttle to the nucleus but not for
so long that degradation of the genetic cargo in the
endolysosomal system occurs.146 Imaging and microtubule
inhibition studies have shown that, upon endocytosis, vesicles
containing polyplexes are actively transported via microtubules
towards the nucleus.199,252 PEI polyplexes were shown
traveling with a linear speed of 10−1 μm·s−1 in COS-7253 and
HUH-7254 cells and accumulated in the perinuclear space
within minutes,253 reducing the distance needed for the
plasmid to reach the nucleus. Outside PEI, Reineke and
coworkers tracked the filopodia-driven transport of polyplexes
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formulated from the cationic glycopolymer Glycofect and
concluded that these complexes were trafficked over long
distances (13 μm) along filopodial projections at a velocity
from 0.003 to 0.07 μm·s−1.255

There is debate about the timing of DNA release by
polycations, and it is unclear if polyplexes outside of
endosomes are efficiently trafficked. There is evidence,
however, that some naked plasmids (i.e., plasmids uncom-
plexed from the polycation) can utilize intracellular machinery
in the cytoplasm to complete the race to the nucleus and allow
for nuclear uptake. Plasmids have been shown to be actively
transported on microtubules, along with actin to a lesser
degree,256 by recruiting molecular motors, transcription
factors, and importins to facilitate movement.257 This recruit-
ment, and subsequent transport, is sequence-specific.258 Dean
et al. showed that plasmids containing binding sites for cyclic
adenosine 3′,5′-monophosphate response-element binding
protein, present in the cytomegalovirus promoter, significantly
increased microtubule transport rates and nuclear accumu-
lation of the plasmid.259 Interestingly, stabilizing microtubules
via acetylation, either with inhibitors or mechanical manipu-
lation, can greatly increase rates of nuclear localization and
improve gene delivery.259−261

2.4.7. Unpackaging. Although it is not entirely clear what
stage in the transfection process is optimal for the unpackaging
of the nucleic acid cargo, the preferred location/time of this
occurrence likely varies heavily on the type of polymer, cells,
pathway utilized, and nucleic acid type. It is generally agreed,
however, that unpackaging must occur at some point to allow
for the nucleic acid to perform its ultimate function. A fine
balance must be achieved so that the polymer properly protects
the nucleic acid from degradation in the extracellular and
intracellular space while releasing it at the optimal time and
place.262 Premature release in the degradative endolysosomal
system263 or intracellular space can lead to degradation of the
cargo due to nuclease activity. Naked plasmid DNA has a half-
life of ∼50−90 min in the cytoplasm of HeLa and COS
cells.264 For this reason, it is suggested that polyplexes should
be programmed to release DNA near the nucleus or inside the
nucleus.201 Simple parameters of the polycation can be tuned
to achieve the right balance of protection and release including
the polymer length,265,266 charge density,267,268 and structural
rigidity.269,270 The release performance can also be improved
with the incorporation of chemical moieties that allow for
intracellular degradation of the polymer.262,271,272

While great progress has been made in “smart” stimuli-
responsive polymers (described in Section 3.6), it is still
valuable to understand how and to what degree materials like
PLL or PEI manage to release their cargo. Lauffenburger et al.
found that PLL polyplexes could reach the nucleus intact but
were unable to unpack (or unpackage) their cargo to allow for
gene expression.265 Others have also attributed PLL’s poor
transfection efficiencies to its inability to unpack nucleic acid
cargo.273−276 Chloroquine, a lysosomotropic antimalarial used
widely in gene delivery,181,277,278 has been commonly used in
conjunction with PLL to improve its transfection proper-
ties.189,279,280 Chloroquine’s mode of action is usually
attributed to its ability to promote endosomal escape,181 but
several studies have shown that chloroquine can improve
transfection efficiencies of strong-binding polycations, such as
PLL, by competitively binding and releasing the nucleic acid
cargo.279,281 In contrast, PEI unpackages much more efficiently
than PLL273 and does not require chloroquine for efficient

transfection.190 Studies have shown that PEI polyplexes can
relinquish DNA cargo in the presence of competitive
polyanions present in the cellular environment including
glycosaminoglycans,275,276 RNA,282 and cytosolic proteins.283

It is unclear, however, whether competitive binding causes
unpackaging in the cells, and if so, what macromolecule is
ultimately responsible.146,232 The intracellular location of
polyplex unpackaging is also unclear. Chen at al. used
fluorescence resonance energy transfer to quantify PEI
unpacking kinetics in the endolysosome, cytoplasmic, and
nuclear compartments and found that the unpackaging of PEI
begins in the endo/lysosome and continues at a similar rate in
the cytosol.284 While others have also observed PEI
unpackaging in the cytosol,285 several others have observed
intact polyplexes in the nuclei of cells (Section 2.4.8) and
witnessed unpackaging occurring after nuclear uptake.273 It is
not clear whether unpackaging before or after nuclear uptake is
optimal for transcription and to what degree the polyplex must
be unpackaged. Surprisingly, Fajac et al. showed that
transcription of plasmid can still occur within loosely bound
PEI polyplexes (N/P = 5−15), and was only inhibited when
the DNA was fully compacted (N/P > 20).286

Importantly, this work suggests that, on the one hand, that a
complete dissociation of the polycation from the nucleic acid
cargo may not be required for an efficient transgene expression.
On the other hand, Pack and coworkers have reported a 58-
fold increase in delivery efficiency, merely by weakening PEI-
DNA interactions through acetylation of primary amines
within PEI. Despite significant losses in buffering capacity
caused by acetylating up to 57% of primary amines, they still
observed polyplex unpackaging within HEK293 cells via
fluorescence resonance energy transfer.268 Therefore, the
increased buffering capacity of other amino-containing
polymeric reagents does not necessarily correlate to improve-
ment in transgene delivery, and a balance between DNA-
polymer binding and buffer capacity must be engi-
neered.287−290

2.4.8. Nuclear Membrane Penetration and Active
Nuclear Transport. The nucleus of the cell is contained by a
phospholipid bilayer envelope that consists of an outer
membrane, which is continuous with the endoplasmic
reticulum, and an inner membrane, which encloses the
nucleoplasm. The inner and outer membranes are separated
by the perinuclear space and are fused at many sites by
proteinaceous pores, called nuclear pore complexes
(NPCs).291 Nuclear pore complexes are large macromolecular
assemblies (120 MDa) that are constructed from multiple
copies of ∼30 proteins called nucleoporins.292 NPCs control
the bidirectional transportation of cargo, such as proteins and
mRNA, in and out of the nucleus in a highly selective manner.
While small molecules and ions can passively diffuse through
the 9 nm pores of NPCs, larger cargo (up to 39 nm in
diameter) requires active transportation through the nuclear
pore complex.293 Large proteins bound for the nucleus, for
example, have small peptide tags called nuclear localization
signals (NLS) that recruit nuclear shuttle proteins, called
karyopherins, which shuttle the cargo through the nuclear pore
complex.294 Although there are many types of NLS tags, the
prototypical NLS is the monopartite NLS derived from the
SV40 large T antigen NLS containing the lysine-rich sequence
PKKKRKV.295 Different types of NLS signals can recruit a
variety of karyopherins, including importin α, importin β, and
exportins, that are used to shuttle different macromolecular
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cargoes. Most commonly, an NLS will bind to the importin α-
subunit of an importin α/β dimer or directly to the importin β,
which will then translocate the complex through the nuclear
pore complex.294 The release of the cargo is mediated by the
Ras-related small GTPase Ran, which regulates the direction-
ality of cargo transport into and out of the nucleus.296

While viruses have evolved the ability to harness the nuclear
import machinery to transfer genetic cargo into the
nucleus,297,298 polyplex-based systems have been shown to
be severely hampered by the nuclear membrane barrier.299

Therefore, polyplexes greatly benefit from the breakdown of
the nuclear membrane that occurs during the cell division. PEI-
based polyplexes show a 30- to 500-fold increase in
transfection efficiency when introduced to cells shortly before
cell division (G2/S vs G1 phase),300 which can be achieved
chemically via a double thymidine block synchronization
strategy, among others.301−303 The nuclear barrier of non-
dividing cells is more persistent, however, since their nuclear
membrane does not break down, and the transport of DNA
through the nuclear pore complex is necessary.304 The uptake
of DNA, both plasmid and oligos, through the nuclear pore
complex is energy-dependent and highly dependent on the
cargo size.305,306 Wolff et al. showed that the size limit for
passive diffusion of dsDNA into the nucleus was between 200
and 310 bp, while DNA between 310 and 1500 bp required an
active transport.307 The nuclear uptake of a 900 bp DNA
cassette was improved via a covalent attachment of the SV40 T
antigen NLS, a strategy also employed by Behr et al. to
improve the transgene expression of an end-capped DNA
reporter construct.308 The covalent309,310 and noncovalent
attachment311,312 of NLS peptides to plasmids has been
employed with mixed results.313 Interestingly, researchers have
found success through the use of nuclear proteins, such as
high-mobility-group proteins and histones, as gene delivery
vectors themselves, since these cationic proteins are trafficked
to the nucleus and naturally compact DNA.314,315 In addition,
the glycosylations of vectors and plasmids have also been used
to improve nuclear uptake via a glyco-dependent mechanism
involving nuclear lectins.316 Figure 6 summarizes several
strategies for increasing nuclear uptake.
It has been found, however, that naked plasmid DNA itself

can promote active nuclear uptake by the virtue of having the
correct sequence.318 DNA nuclear targeting sequences are
promoter regions of DNA that bind transcription factors in a
sequence-dependent manner. Of a handful of DNA nuclear
targeting sequences identified to be effective with all
mammalian cell types, the SV40 promoter is the most well-
known.317 This 72 bp sequence binds at least 10 different
transcription factors ubiquitously expressed in mammalian
cells.319 Binding of the transcription factors to the DNA
recruits importins that allow for active uptake of the DNA
through the nuclear pore complex.317 On the basis of this
mechanism, it would seem that any eukaryotic promoter region
that can bind transcription factors should be able to promote
nuclear uptake, but this is not the case.320 Although DNA
nuclear targeting sequences seem to bind a large array of
proteins, a specific subset of transcription factors, importins,
and chaperone proteins are necessary to promote nuclear
uptake,321−323 which not all promoters may recruit or
utilize.317 Another well-established DNA nuclear targeting
sequence includes the binding site for the nuclear factor κβ
(NFκβ) transcription factor, which is induced through stimuli
such as the addition of tumor necrosis factor-α (TNF-α).324,325

In addition, glucocorticoid receptor binding sites have also
been used to promote the nuclear uptake of DNA.326,327 The
introduction of glucocorticoids, such as dexamethasone,
induces a conformational change in the glucocorticoid
receptor, which promotes its transport into the nucleus.299

Dexamethasone dilates the nuclear pores, which can also
promote the nuclear uptake of large plasmid DNA and increase
the transfection efficiency.302,328,329

For researchers endeavoring to improve the nuclear uptake
of DNA cargo with polymer-based vehicles, it would be helpful
to understand what levels of nuclear uptake are typically
achieved with standard PEI-based transfections. Using
quantitative polymerase chain reaction measurements, Szoka
et al. detected as few as 75 and as many as 50 000 plasmid
copies (<5% of the applied dose) in the nuclei of transfected
cells but found that levels above 3000 plasmids/nuclei yielded
marginal returns in transgene expression.330 According to a
study of Escande et al., PEI enhances nuclear uptake compared
to naked DNA. They showed that complexation of circular
DNA with PEI increased nuclear uptake by 10-fold (from 0.1
to 1%) after microinjection into the cytoplasm.331 In fact,
plasmid still bound to PEI has been observed in the
nucleus273,284,325,332,333 and was typically seen 3.5−4.5 h
after transfection.273,325,333 Midoux et al. claim that entire
polyplexes (70−300 nm in diameter) may pass through NPCs,
which are typically exclusive of particles that size.325 Although
the mechanism of this polyplex translocation through the
nucleus in non-mitotic cells is not clear,334 work by Reineke et
al. suggests that the permeabilization of the nucleus by PEI
may play a role.137,143 More work, however, is needed to fully
understand the role of PEI in nuclear uptake of DNA cargo.
Any endeavor to maximize the nuclear transport of a polymer-

Figure 6. Examples of strategies employed for increasing nuclear
uptake of plasmids. The expression of plasmids in dividing cells is far
higher than in non-mitotic cells due to the breakdown of nuclear
membrane, which allows for enhanced nuclear uptake. To increase the
nuclear transport of non-dividing cells, an attachment of nuclear
localization signals (NLS) or inclusion of DNA nuclear targeting
sequences (DTS) are employed to harness importins to allow for a
shuttling of the plasmid through the nuclear pore complex. Reprinted
from ref 317 with attribution under the Creative Commons
Attribution License 4.0 (CC BY).
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based vehicle must consider many variables including:
differences in cell types, stages of division, pathways utilized
in uptake, the timing and location of unpackaging, and
transport requirements for each type of nucleic acid cargo.
We conclude our discussion of biological concepts pertinent

to gene delivery with a few directions for future research. We
emphasize the need to exploit advances in intracellular
imaging. For instance, light sheet fluorescence microscopy335

can visualize polyplex trajectories within live cells as well as
model organisms such as the zebrafish. This way, the
intracellular polyplex distribution among different organelles
can be acquired with a high spatiotemporal resolution through
live cell imaging instead of fixed specimens, shedding light on
polyplex itineraries within cells and animals. We also note that
insufficient attention has been devoted to measuring the
immunogenicity of polyplex delivered through in vivo
modalities. While a histological examination of tissue samples
is growing more prevalent, we also believe that characterizing
the expression of pro-inflammatory and anti-inflammatory
markers induced by a polyplex administration will be
illuminating. Overall, the application of more sophisticated
biological characterization techniques can resolve several
enigmas that still confound the elucidation of polymeric gene
delivery mechanisms.

3. CHEMICAL DESIGN OF POLYMERIC CATIONIC
VECTORS

The promise of precise molecular engineering of polymeric
materials is often cited as the main advantage to using them in
many fields but particularly in nonviral gene delivery. It is no
surprise that, as the field of polymer synthesis continues to
advance, more diverse polymeric vectors are reported for their
potential in gene therapy applications. The constant invention
and refinement of new polymerization techniques coupled with
the synthesis of novel functional monomers continues to
expand the ever-growing catalogue of synthetic and semi-
synthetic macromolecules available. The introduction of
reversible deactivation radical polymerizations in the early
2000s has permitted the synthesis of previously inaccessible
well-controlled polymers that incorporate a larger variety of
chemically interesting monomers. Techniques such as
reversible addition−fragmentation chain-transfer (RAFT)
polymerization,336−338 nitroxide-mediated polymerization
(NMP),339,340 and atom transfer radical polymerization
(ATRP)341,342 allow the synthesis of polymers with tailored
molecular weights and low molecular weight dispersity, while
using previously inaccessible monomers,343 initiation path-
ways,343 and biologically friendly solvents.344−346 These
techniques reduce the termination events present in conven-
tional free radical polymerization, granting polymeric mole-
cules in which tailored end groups are incorporated in most of
their chains. Apart from the opportunities to incorporating
beneficial end groups (e.g., targeting moieties for cell-specific
gene delivery) this level of end group control also allows for
the synthesis of controlled block copolymers through these
techniques. In gene delivery, these versatile and robust
polymerization methods allow for the incorporation of
cationic, hydrophilic, hydrophobic, and targeting functional
groups as monomers or end groups.347 In addition to the surge
in controlled radical polymerization techniques, other polymer-
ization methods continue to be developed for the synthesis of
nucleic acid delivery vectors. For instance, polymerization
methods using click chemistry,348,349 azide−alkyne cyclo-

addition,350 anionic polymerization,351 cationic polymeriza-
tion,352 and ring-opening polymerization353 have also been
reported for the synthesis of polymeric vectors.
The tenet of polymeric gene delivery design is the

incorporation of positive charges distributed along the
macromolecular structure. These charges are responsible for
the polyelectrolyte complexation of polycations and negatively
charged nucleic acids into polyplexes; it has been proposed
that the favorable entropic changes due to the release of
counterions from the polymer and nucleic acid chains are the
driving force for this complexation.354,355 Paradoxically, the
positive charges that allow complexation are also responsible
for some of the cytotoxicity concerns that prevent a widespread
use of polymeric vectors.134,135 Several chemical strategies have
been employed to mitigate some of the inherent drawbacks of
polymeric cations and enhance their delivery efficiency: (1)
engineer the type of charge groups used for polycation
synthesis, (2) modulate the polymer architecture and
molecular weight, and (3) tailor the polycation chemical
composition through the introduction of hydrophobic, hydro-
philic, or stimuli-responsive moieties (Figure 7).

A large breadth of literature has been dedicated to studying
how modifying each of these aspects affects the biological
processes involved in gene delivery and ultimately how they
affect the transfection performance. It remains challenging to
ascertain how effectively gene delivery vehicles can be
translated across diverse cell types. This section is focused
on describing classic and novel polycations with a variety of
architectures and compositions that are used for gene delivery
while highlighting how their specific molecular design affects
their performance as gene delivery vectors.
3.1. Polymer Architecture

Polymers that are used for nucleic acid delivery are chemically
and structurally diverse, and herein we describe the
fundamental terms that define these structures. Polymers are
macromolecules that are defined chemically and topologically
by their composition (i.e., the type and number of (co)-
monomers they contain) and their architecture (i.e., the spatial
arrangement in which those monomeric units are linked
together to form the polymer chains) (Figure 8). Homopol-
ymers incorporate only one type of monomer, while

Figure 7. Schematic summary of the factors considered during the
design of functional polycations with tailored properties for the
delivery of therapeutic nucleic acids.
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macromolecules with two or more monomer types result in
statistical, alternating, gradient, or block copolymers. Statistical
copolymers incorporate the different repeating units along the
polymeric structure with an organization that reflects their
reactivity. Alternating copolymers are a specific case of
statistical copolymers that incorporate two types of monomeric
units in an alternating pattern. Finally, block copolymers
display defined segments, or “blocks”, that comprise only one
type of monomeric unit. In terms of architecture, linear
polymers are composed of monomers bound only to two other
monomers to form the polymer chains. As highlighted in
Figure 8, monomers and crosslinkers with the ability to be
chemically bound to more than two monomers enables the

synthesis of macromolecules with radiating chains, resulting in
(co)polymers with dendrimer, branched, star, and graft
architectures, as well as polymeric networks and gels. Besides
the topologies accessible through covalently linking monomers
in different spatial arrangements, other topologies can be
created via supramolecular assembly of macromolecules. For
example, amphiphilic copolymers (i.e., polymers that contain
hydrophilic and hydrophobic monomers) can self-assemble
into structures such as micelles, worms, and vesicles (Figure 8).

3.1.1. Linear. Linear polycations are the most commonly
studied polymeric nucleic acid delivery vehicles.356 PEI, PLL,
PDMAEMA, poly 2-aminoethylmethacrylamide (PAEMA),
poly(amidoamines) (PAAs),357 and poly(β-amino esters)

Figure 8. Typical polymer architectures and self-assembled structures are defined based on the monomer identity and spatial arrangement (cartoon
to display orientation in space; size not drawn to scale).

Figure 9. Chemical structures of common linear cationic polymers used as vectors for gene therapy.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

P

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig9&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


(PBAEs)358 have all been widely explored as linear polycations
for the delivery of various payloads (Figure 9).359,360 PEI and
PLL are common commercially available “off-the-shelf”
materials that contain amino groups, which can be protonated
at physiological pH.49 Because of their high availability, these
materials were among the earliest structures explored by
researchers in the field.182,361 These structures are often used
as positive controls and have been widely chemically modified
to optimize the performance of a number of specific
applications (vide infra). Linear PEI derivatives are marketed
as jetPEI® by Polyplus-transfection® SA for both in vitro
transfection reagents and in vivo applications. Inspired by the
chemistry and performance of these structures, other common
systems have been created via radical polymerization routes to
house pendant amine structures. For example, PDMAEMA is
readily synthesized to create several homopolymer and
copolymer architectures at different lengths that have been
extensively explored as polycationic vectors. The tertiary amino
groups in PDMAEMA have pKa values of ∼7.5, indicating that
they are only partially protonated at physiological pH (7.4)
and ionic strength (150 mM).360,362

Linear polycations exhibit structural differences such as (i)
cation identity (e.g., primary amines in PLL, secondary amines
in PEI, and tertiary amines in PDMAEMA), (ii) cation
position (e.g., along the backbone in PAAs and PEI versus
pendant in PLL and PDMAEMA), and (iii) cationic density
(i.e., nitrogen-to-carbon atomic ratios). These structures,
however, all share a distinctive feature when used as delivery
vehicles: polyplex formulations based on these polymers
exhibit moderate-to-high transfection efficiencies in vitro
depending on the cell type and particularly at high molecular
weights and formulation ratios (see Sections 3.2 and 6.3 for a
detailed discussion). This is attributable to their strong binding
and protection of the nucleic acid payloads and their ability to
interact with the cellular membrane. While this non-specific
interaction with cell membranes can be beneficial to
performance, unfortunately, it can elicit a high cell toxicity
(half-maximal inhibitory concentration (IC50) values on the
order of 10 of μg·mL−1).49,362 To overcome the delivery
hurdles of linear polycations, several strategies such as the
evaluation of other architectures (Sections 3.1.2−3.1.4),
tailoring of the polycation molecular weight (Section 3.2),
introduction of different functional groups such as alternative
charged centers (Section 3.3), hydrophilic (Section 3.4) and
hydrophobic moieties (Section 3.5), and stimuli-responsive
moieties (Section 3.6), have been explored and are further
discussed below.
PAAs and PBAEs represent a somewhat different class of

linear polycations.357,358,363 These polymers are synthesized via
the Aza-Michael addition of primary or (bis)secondary amines
to multifunctional acrylamides (for PAAs) and acrylates for
(PBAEs). Their uniqueness arises from their modular
syntheses. A plethora of different functional groups, contained
in the amine or acrylate/acrylamide monomers, can be
incorporated seamlessly into the polycationic structure (see
the R1−R4 substituents in Figure 9). The large number of
monomers available for the synthesis of PBAEs have afforded
more than 2000 PBAEs that have been explored as gene
delivery vectors.358,364 In contrast to PAAs, PBAEs contain
degradable ester groups along their polymer backbone, which
can contribute to the cargo release. Also, because of the
modularity of PAAs and PBAEs, modifications to lower the
cytotoxicity of their formulations, such as the introduction of

hydrophilic moieties and the modification of the polymer end
groups, can be easily achieved. The synthesis, properties, and
use of these highly modular polycations in different biomedical
applications, including gene delivery, have been recently
reviewed.232,357,358,363

Linear block copolymers that link polycationic homopol-
ymers with non-ionic hydrophilic blocks that condense nucleic
acids into nanometric polyplexes are sometimes called polyion
complex (PIC) micelles. These nanometric polyplexes formed
by electrostatic complexation (rather than by amphiphilic self-
assembly, see Section 3.5.2) place the nucleic acid cargo in the
assembly core and provide a hydrophilic protective corona.
PEG, as well as hydrophilic acrylamide, acrylate, and
methacrylate polymers have been used as the hydrophilic
coating. PICs were first reported in 1996, where mixtures of
PEG-b-PLL diblock copolymers and ASOs formed relatively
monodisperse aggregates.365 Since then, PICs have been used
as delivery vehicles for DNA,366−369 siRNA,91,370−382

ASOs,376,383,384 ssRNA,382 antisense ODNs,384 and
mRNA.385 PICs, their formation, and applications in gene
delivery have been summarized in recent reviews.386−388

As alternatives to conventional PIC micelles (where the
hydrophilic block is covalently bound to the polycations),
Kataoka and coworkers have shown that PEGylated antisense
ODNs384 or siRNA389 form similar PICs when mixed with
PLL homopolymers. The addition of targeting moieties to
PICs to enhance their performance and provide cell-specific
delivery has also been explored. PICs have been functionalized
with cRGD peptides,370,371,379,381 antibodies to target pancre-
atic cells,377 lactose groups for enhanced delivery to HuH-7
cells,384,389 and glucose groups for a systemic delivery of
ODNs to the brain.390

In addition, the transfection efficiency of PIC micelles can be
improved by the introduction of stimuli-responsive properties
(Section 3.6).91,378,380,391−393 For instance, Belamie et al.
reported siRNA delivery to mesenchymal stem cells with
endosomal pH-triggered release. Simultaneous complexation of
siRNA with either PLL or PEI homopolymer polycations and
PEG-b-poly(methacrylic acid) (PMAA) diblock copolymers
formed tripartite PIC micelles that disassemble upon
protonation of PMAA at lysosomal pH conditions (Figure
10A).91 In another example, the complexation of pDNA with a
PEG-b -po ly{N -[N ′ -(2-aminoethy l) -2-aminoethy l] -
aspartamide} (PEG-b-P[Asp(DET)]) diblock copolymer,
synthesized by coupling the blocks through a disulfide group,
afforded PIC micelles with intracellularly cleavable PEG
coronas. (Figure 10B).391 Triblock copolymers with thermor-
esponsive properties have also been employed in the
formulation of PIC micelles. Miyata et al. showed the
complexation of ASOs with a triblock terpolymer containing
poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-n-propyl-2-oxazo-
line) (PnPrOx), and PLL, containing a PnPrOx midblock that
exhibits a lower critical solution temperature. Triblock micelles
were able to outperform diblock micelles that did not contain
the PnPrOx midblock, when used as a serum-stable delivery
agent for a cancer therapeutic.383 The presence of the
thermoresponsive PnPrOx midblock prevented nucleic acid
degradation by nucleases and polyanion exchange with
glycosaminoglycans (GAGs) at physiological temperature.392

Polyion complex micelles offer a simple method to introduce
hydrophilic coatings into polyplexes (a concept that is further
explored in Section 3.4). Their chemical versatility has been
demonstrated through the incorporation of targeting, cross-

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

Q

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


linking, and stimuli-responsive moieties that have allowed
them to be used for the delivery of many therapeutic nucleic
acids.

3.1.2. Branched (co)Polymers and Dendrimers.
Branched polycations having secondary polymer chains
budding from a primary polymer backbone in a tree branch-
like structure are also a class of widely studied nucleic acid
delivery vehicles. These polycations can be divided into
branched (co)polymers and dendrimers. Branched (co)-
polymers possess randomly distributed branches along their
structure with broad molecular weight distributions. Den-
drimers, on the other hand, are well-defined molecules with
fractal branching radiating from a core. Branched PEI,
branched PBAEs, as well as PLL, PAMAM, and poly-
(propyleneimine) (PPI) dendrimers (Figure 11) have all
been widely explored as gene delivery vectors. The use of
branched (co)polymers for gene delivery presents two main
advantages over dendrimers or linear polymers: (1) these
polymers often incorporate different types of amine groups
(with different pKa values) within the branching points, the
backbone, and the end groups, which can be protonated at
varying pH values and (2) branched polymers can be easily
modified and synthesized at low cost.394,395 In general,

Figure 10. (A) PIC micelles with acid-induced disassembly of their
cores. Reprinted with permission from ref 91. Copyright 2017 Royal
Society of Chemistry. (B) PIC micelles based on PEG-ss-P[Asp-
(DET)] degradable diblock copolymers undergo PEG cleavage in the
reducing intracellular environment. Reprinted with permission from
ref 391. Copyright 2008 American Chemical Society.

Figure 11. Chemical structure of polycationic branched polymers and dendrimers commonly used for the delivery of nucleic acids.
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branched polymers with increasing degrees of branching and
molecular weights have shown enhanced cellular internal-
ization but at the cost of higher cytotoxicities and higher
variability due to larger dispersity indices.396,397

Branched PEI, one of the most widely studied polycation
classes for gene delivery, is composed of primary, secondary,
and tertiary amines. The presence of these different amine
groups (with different pKa values) endows branched PEI
systems with an efficient nucleic acid binding ability and
broader buffering capacity when compared to polycations
based on just one class of amine cation. This architectural
feature likely contributes to the high performance of branched
PEI vectors.395 Branched PEIs with high molecular weight
have shown greater transfection efficiency and nucleic acid
binding than those with low molecular weights. A high
molecular weight, however, is correlated to a greater toxicity
towards cells due to the increase in charge density on the
polymer, which causes cell membrane disruption.396,398

Branched PEIs with low molecular weights exhibit lower
toxicity but are less efficient at binding DNA, and thus
chemical modifications such as end-group functionaliza-
tion285,399 and incorporation of degradable linkages/crosslinks
have been explored to improve the transfection efficiency of
these vectors.400−402

Similar to their linear counterparts, branched PBAEs are
synthesized via a one-pot Michael addition of primary or
secondary amines to multifunctional acrylates.358,363 Branched
PBAEs effectively condense DNA, display lower cytotoxicity in
comparison to PEI, and display biodegradability due to their
ester linkages.358 Recent studies showed that, compared to

their linear counterparts, branched PBAEs display higher
transfection efficiencies, with high molecular weight hyper-
branched PBAEs displaying simultaneously a higher trans-
fection efficiency and lower cytotoxicity.403,404 PBAEs have
been recently reported as vectors for the delivery of plasmids
for gene editing therapies.405−407 Green et al.405 reported
linear and branched PBAEs that are optimized for the
transfection of HEK293T or B16F10 cells, respectively (Figure
12A). It was shown that polyplexes formulated with these
PBAEs have the capacity to co-deliver two plasmids encoding
Cas9 endonucleases and sgRNA, respectively, to perform
either 1-cut knockout or 2-cut gene deletions. Hu and
coworkers reported that polyplex formulations based on linear
and hyperbranched PBAEs outperformed a 25 kDa PEI and a
PAMAM G4 dendrimer control in the transfection of SiHa and
HeLa cells with green fluorescence protein (GFP) encoding
plasmids (Figure 12B).406 Similar formulations were then used
for the delivery of CRISPR/Cas9 encoding plasmids targeting
HPV16 E7 oncogenes.
The multiple end groups of dendrimers have shown utility

for their application in drug and gene delivery.408 Dendrimers
are synthesized using repetitive sequences in which each layer,
called a generation, is grown in a stepwise manner from the
core. This sequence guarantees a regular branched structure
that is well defined. The end groups of dendrimer macro-
molecules for gene delivery often contain primary amines, thus
presenting a highly charged corona at physiological conditions,
leading to efficient nucleic acid binding and enhanced cellular
internalization. The nucleophilic amine end groups allow for a
further chemical modification allowing the incorporation of

Figure 12. (A) Linear (4-4-6) and branched (7,8-4-J11) PBAEs used to transfect HEK293T and B16−F-10 cells, respectively. Adapted with
permission from ref 405 with attribution under the Creative Commons Attribution License CC BY-NC-ND 4.0. (B) Polyplex formulations (N/P
ratio of 75) based on linear (PBAE) or hyperbranched (hPPC1-2) poly(β-aminoesters) outperform PEI and PAMAM dendrimer controls in the
transfection of HeLa cells. Reprinted with permission from ref 406. Copyright 2020 Elsevier.
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targeting moieties to increase specific internalization and/or
addition of hydrophilic units to reduce toxicity.
PAMAM dendrimers, the most studied dendrimer for gene

delivery applications, contain hydrogen-bonding amide and
tertiary amine groups in their cores and display primary amine
end groups as their corona. The highly charged primary amine
end groups are responsible for the toxicity, and their
modification has been explored as a tool to reduce toxicity,409

increase circulation time,410,411 or improve targeting abil-
ity.412,413 The molecular weight, size, and number of end
groups in PAMAM dendrimers grows rapidly with each
generation. For instance, a Generation 3 (G3) PAMAM
dendrimer weighs 5147 g·moL−1 and contains 24 terminal
amine groups, while a G6 dendrimer weighs 43 451 g·moL−1

and contains 192 terminal amine groups.185 The in vitro
transfection efficiencies and toxicities of PAMAM dendrimers
are highly generation-dependent and results vary depending on
the type of cell line used.414 Because of their high transfection
efficiencies, intact and “activated” G6 PAMAM dendrimers
marketed as SuperFect® and Polyfect®, respectively, are sold
by Qiagen as transfection reagents for a broad range of cell
lines including COS-7, NIH/3T3, HeLa, 293, and CHO cells.
A thorough analysis on the use of PAMAM dendrimers for
biomedical applications including gene transfections was
recently reported by Giarolla et al.414 PLL415 and PPI416−418

dendrimers have also shown promise as gene delivery vectors,
especially because of their reported ability to escape the
endosomes after cellular internalization. Similar to PAMAM,
PLL and PPI dendrimers consist of spherelike structures
decorated with primary amines that maintain a good ability to
be internalized into cells after complexation with nucleic acids.
Because of their highly charged corona, dendrimer vectors

show high cellular internalization, but toxicity remains a
limiting factor moving forward. Overall, dendrimers are unique

vectors due to their well-defined structures. Further review of
the application of dendrimers for gene therapy can be found
elsewhere.419,420

3.1.3. Star. Star polymers are a class of branched polymers
in which linear polymer “arms” radiate out from a common
branching point or “core”. Polymer arms are synthesized
through the same techniques used to synthesize linear
polymers. Controlled polymerization techniques permit the
synthesis of star polymers with targeted molecular weights,
grafting densities, and end-group chemistries. Star polymers
present increased charged density, compared to linear
polymers of the same chemical composition, by covalently
linking several linear arms to the core, making them an
interesting synthetic platform for gene therapy. Star polymers
also possess an increased number of end groups that can be
chemically modified. The synthesis of PDMAEMA-based star
polymers by group transfer polymerization and their
applications in pDNA delivery were reported in the early
2000s.421 Other types of cationic and hydrophilic polymers,
such as oligoethylene imine (OEI), PAEMA, and poly-
(ethylene glycol)ethyl ether methacrylate (PEGEEMA), have
also been used as arms in the synthesis of star polycations with
low molecular weight dispersity.347 Star polymers, with
cationic peptide arms, showed good biocompatibility during
gene delivery.422,423 The use of α-, β-, and γ-cyclodextrin (CD)
as cores in star polymers424−427 has gained popularity due to
their biocompatibility and the development of several synthetic
routes that allow for the conjugation of polymers to the
hydroxy groups present in CDs.
The length, composition, and number of arms in star

polymers determine their properties and gene delivery
efficiency, and thus synthetic strategies that allow for the
control of each of these parameters have been explored. When
considering cationic arm length, Reineke and coworkers

Figure 13. (A) Synthesis of CD-g-P(DMAEMA)-b-P(PEGEEMA) star polymers. Adapted with permission from ref 429. Copyright 2009 American
Chemical Society. (B) Chemical structure of a α-CD-OEI star polymer. Reprinted with permission from ref 428. Copyright 2007 Elsevier. (C)
Arm-first cationic cross-linked star polymers with degradable cores. Reprinted with permission from ref 430. Copyright 2011 American Chemical
Society.
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synthesized a series of discrete star polycations based on a β-
CD core termed “click clusters”.424 These macromolecules
were synthesized through the selective functionalization of the
primary alcohol groups in β-CD with azido groups and
subsequent coupling with alkyne-functionalized OEI dendrons
through a copper-catalyzed 1,3-dipolar cycloaddition. The OEI
arms varied in length between one and five ethylene amine
units, and the star polycations with arms containing four or five
units showed the highest pDNA transfection efficiency in
HeLa and H9c2 cells (at least 1 order of magnitude of
luciferase relative luminescence units (RLU) higher than the
other polycations at N/P of 20), which was comparable to
controls jetPEI® and SuperFect®. This high level of
transfection was achieved while maintaining low cytotoxicity
(>0.8 fraction cell survival in both cell lines) compared to the
poor viability seen for the controls (<30% viability for both
controls in both cell lines). Similarly, Li et al. synthesized α-
CD-OEI star polymers with linear and branched OEI arms
containing 1−14 ethylene imine units (Figure 13B).428 Star
polymers with longer (14 ethylenimine units) branched arms
revealed at least 1 order of magnitude higher transfection
efficiency (luciferase expression measured as RLU) with
HEK293 and Cos7 cell lines than the other analogues and a
25 kDa branched PEI control. Similar trends were observed in
both the presence and absence of serum.

In terms of the composition of the arms, Neoh and
coworkers reported the synthesis and transfection efficiency
comparison of star copolymers that contained either
PDMAEMA homopolymer arms or PDMAEMA-b-PEG di-
block copolymer arms. To synthesize these star (co)polymers,
β-CD was modified with ATRP-initiator groups. The resultant
multifunctional initiators were used in the polymerization of
PDMAEMA arms that were subsequently chain-extended with
a PEGEEMA block (Figure 13A). When compared to linear
high molecular weight PDMAEMA and PEI controls, the star
polymers with PDMAEMA and block PDMAEMA-b-PEG
arms (at N/P 20-30) displayed an approximately fivefold
higher transfection efficiency with HEK293 cells. Similar
luciferase transfection efficiencies with a decrease in cytotox-
icity were observed in comparison to a PDMAEMA
homopolymer star.429

Chemical modifications of star polymers allow for the
improvement of their delivery. An end-group modification of
star polycations to incorporate targeting ligands such as
hyaluronic acid,431 folic acid,432,433 and adamantyl groups434

allowed formulations that actively target specific cell receptors
or tumor delivery. Polyplex formulations based on PEGylated
polycationic star polymers show improved colloidal stability,
decreased toxicity, and increased blood circulation
times.423,429,435,436 Additionally, the incorporation of degrad-
able moieties such as disulfide linkages430 (Figure 13C) and

Figure 14. (A) Oligoamine-grafted PGMA (P(GMA-oligoamine)) exhibits similar cell transfection efficiencies (RLU) of HeLa cells to branched
PEI, while maintaining higher cell viabilities. Reprinted with permission from ref 443. Copyright 2013 American Chemical Society. (B)
Poly(cyclooctene-g-oligolysine) polymers showed enhanced transfection efficiencies in COS-1 cells (GFP expression) when compared to linear
PLL. Reprinted with permission from ref 454. Copyright 2011 Elsevier.
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acid-labile functional groups437 in the star cores provided
routes for polymer degradation and nucleic acid release.
3.1.4. Graft Copolymers. Polycationic graft copolymers

also called brush- or comb-like polymerslink several cationic
polymer chains (or combs) into a single macromolecule. The
combs are typically short oligocations that, on their own,
display poor transfection efficiencies but, when grafted to a
common polymer backbone, afford macromolecules with large
charge densities and enhanced delivery performance. Graft
polymers with PDMAEMA,438−440 PEI,441 PEG-b-PEI,442

oligoamines,441,443 oligopeptide combs,444−454 and other
structures have all been explored as gene delivery vehicles.
Several key features that dictate the properties and efficacy of
these polymers include the type, amount, and length of the
polycationic grafts.
Synthetic approaches using the grafting-to approach have

been exploited, where the cationic combs are attached to
preformed polymeric backbones. For instance, Pun and
coworkers synthesized a library of graft polymers via a post-
polymerization of poly(glycidyl methacrylate) (PGMA)
homopolymers with tetraethylenepentamine (TEPA), pentae-
thylenehexamine (PEHA), and tris(2-aminoethyl) amine
(TREN).443 Graft homopolymers containing TEPA and
PEHA combs with a degree of polymerization of 50 have
been explored for the transfection of HeLa cells with DNA
polyplexes at N/P ratios of 10 (Figure 14A). These structures
have shown a similar performance to a control 25 kDa
branched PEI; the use of degradable linkers between the
backbone and the cationic grafts have been explored as a
strategy to reduce the toxicity and enhanced the release of the
nucleic acid cargo.440

A graft (co)polymer with cationic oligopeptide combs has
also been synthesized via a grafting-through polymerization of
oligopeptide macromonomers. Pun and coworkers have
synthesized a series of vinyl-terminated cationic oligopeptide
monomers that can be copolymerized with N-(2-
hydroxypropyl)methacrylamide (HPMA) via a conventional
free radical and RAFT polymerization to afford brush
copolymers with pendant oligopeptide combs.444,445,447−450

The first brush copolymer contained oligolysine (K11) combs,
which delivered pDNA to HeLa cells with transfection
efficiencies similar to a linear PLL control yet with a lower
cytotoxicity.444 Harnessing the modularity of this synthetic
approach, several iterations of these brush copolymers were
synthesized aiming to improve their efficiency. Polymers with
optimum oligolysine length (K10),

445 incorporating neutral
(glycine) and different cationic (arginine and histidine)
peptides in the oligopeptide sequences, were explored.449,452

Additionally, brush polymers with oligopeptides linked to the
polymer backbone created with a degradable linker448,451 or
ligands for cell-specific delivery have also been studied.447

Emrick and coworkers have prepared comb-peptide polymers
through ring-opening metathesis polymerization (ROMP) of
cyclooctene-oligopeptide macromonomers that afford comb-
like cationic delivery systems (Figure 14B).446,453,454 A
pentalysine-comb cyclooctene polymer with a molecular
weight of ∼30 kDa showed a more than twofold greater
pDNA transfection efficiency of COS-1 cells when compared
to jetPEI®, SuperFect®, and linear PLL controls.453 The
polyplex formulations based on these comb polymers showed a
lower efficiency when compared to Lipofectamine 2000 (33K
vs 49K relative fluorescence units) but showed lower

Figure 15. (A) Representation of general trend: increasing molecular weight increases transfection efficacy and toxicity. (B) Increasing the
molecular weight of PEI results in higher transfection efficiency. Reprinted with permission from ref 457. Copyright 1999 John Wiley and Sons. (C)
In star polymers, it is possible to increase the number of arms while keeping the molecular weight of arms consistent. (D) In the case of
PDMAEMA, a higher number of arms within star polymers was found to increase transfection efficacy. (E) In another variation of star polymers, we
can increase the molecular weight of arms while reducing the number of arms such that the molecular weight of the star polymer remains constant.
(F) Adopting the design from (E) was also found to increase transfection efficacy. (D, F) Reprinted with permission from ref 468. Copyright 2013
Elsevier.
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cytotoxicity (99% vs 67% COS-1 cell viability). Analogous
polycyclooctene polymers containing di-, tri-, tetra-, and
pentalysine grafts have also been evaluated in the transfection
of C2C12 cells, where the tetralysine-containing comb polymer
variant displayed greater GFP expression levels than the other
variants.454 Copolymerization of the tetralysine comb polymers
with a cyclooctene macromonomer containing a nuclear
localization signal peptide greatly increased the performance
of these systems. The DNA binding ability of the tetralysine-
containing comb polymers can be modulated through
copolymerization with a hydrophilic zwitterionic sulfobe-
taine-cyclooctene monomer. To modulate association, copoly-
mers with ∼17 mol % of the sulfobetaine monomers have
shown a weaker binding affinity when complexed with DNA
than the tetralysine-comb homopolymers; subsequently, this
translated to a twofold increase in delivery efficiency with
SCOV3 cells.446

Overall, in this section, we have discussed how the study of
polycations with multiple architectures have been a central
pillar of the field of polymer-mediated nucleic acid delivery.
Initially limited to the used of “off-the-shelf” polycations, the
field has exponentially grown in parallel to the development of
new techniques that allow for the synthesis of macromolecules
with diverse architectures. It is important to note that
architecture is only one variable to improve the delivery
efficiency of cationic polymers; often changes in molecular
weight and polymer composition are simultaneously examined,
and these strategies will be discussed further in the following
sections.

3.2. Polymer Molecular Weight

Polymer molecular weight plays a key role in optimizing
transgene expression and delivery, with both higher and lower
molecular weight polymer vectors possessing pros and cons.
The molecular weight of polymers employed for gene delivery
influences two key factors related to the success of a gene
delivery vehicle: transfection efficacy and cytotoxic-
ity.45,47,455,456 These effects have been evaluated in
PEI,457,458 PLL,459 PDMAEMA,460 PAEMA,461 and other
polycations. High molecular weight polymers possess im-
proved transfection efficiencies, in part due to increased
in t e r a c t i on s w i th the ce l l membrane (F i gu r e
15A).186,457,462−464 However, these enhanced membrane
interactions are problematic and lead to cytotoxicity, which
often increases when increasing the molecular weight of
polymeric delivery vehicles.462,465,466 Alternatively, lower
molecular weight polymers show a reduced cytotoxicity and
dissociate more readily from DNA leading to improved cargo
unpacking.265 These trends in transfection efficacy and
cytotoxicity tend to hold in the range of 1−100
kDa;455−457,462−464 however, certain polymers display cutoff
ranges where these trends no longer apply. For example, Mikos
and colleagues found that PEIs of 1800, 1200, and 600 Da
showed no increase in transfection efficacy compared to naked
pDNA indicating that, for PEI, there is a minimum threshold
molecular weight to see such trends.457

High molecular weight polymers exhibit higher transfection
efficiencies yet increased toxicity consistently across different
architectures including dendrimers,467 stars,468 and linear
polymers. For example, Xu et al. examined the effects of
molecular weight as well as arm number and length on the
transfection efficiency for a series of PDMAEMA star
polymers.468 When the arm length was held constant,

increasing the number of arms (which consequently increases
the molecular weight of the star polymer) simultaneously
improved transfection efficiency and increased toxicity towards
HepG2 and COS7 cells (Figure 15B). In addition, when
molecular weight was held constant, star polymers with longer
but fewer arms had a higher transfection efficacy and more
toxicity (Figure 15C). For example, at N/P = 9, increasing the
number of arms from 4 to 21, while keeping the molecular
weight constant at 50 kDa, increased cell viability over 15% but
decreased luciferase expression more than 10-fold in both cell
lines. It is hypothesized that stronger interactions between
these longer arms and the cell membrane lead to higher cellular
delivery but also to higher toxicity. These observations are like
those discussed above for linear polymers.
Although the trends of molecular weight on transfection

properties discussed above hold true for many structures, there
are examples where no trends or contrary effects are
observed.469−473 Volonterio et al. observed that when using
PAMAM dendrimers of different generations (2, 4, and 7),
with higher generations having increasing molecular weights,
there was no trend in pDNA transfection efficacy in HeLa
cells.469 This seemingly contradictory observation could be due
to the wide range of N/P ratios studied, which were in the
range of 5−75. In another example that conflicts with the
prevalent trend that increasing molecular weight increases
transfection efficacy and cytotoxicity, Reineke et al. synthesized
a series of diblock glycopolymers containing a non-ionic
hydrophilic glycopolymer block composed of 2-deoxy-2-
methacrylamido glucopyranose (MAG) units, and a N-[3-
(N,N-dimethylamino)propyl]methacrylamide (DMAPMA)
cationic block.470 They evaluated the effect of the molecular
weight of each block on pDNA transfection efficiency and
cytotoxicity and found that increasing the DMAPMA block
molecular weight decreased the pDNA internalization and
transfection efficacy yet also increased toxicity in HEPG2 cells.
Interestingly, the MAG block length had no effect on the
transfection efficacy or toxicity in the systems studied. The
block length effects can also be dependent on the type of
nucleic acid being delivered; Reineke and coworkers
synthesized a series of three P(MAG)-b-poly(N-(2-amino-
ethyl) methacrylamide) P(MAG)-b-P(AEMA) diblock glyco-
polymers, where the degree of polymerization of the AEMA
block was 21, 39, and 48, respectively.471 They showed that,
when these diblock copolymers were used to transfect HeLa
cells with pDNA, polymers with a shorter AEMA block led to
lower cell internalization but a higher luciferase expression. In
contrast, when using these diblock copolymers as siRNA
delivery vectors to induce luciferase knockdown in U-87 cells,
only the polymer with the longer AEMA showed a gene
knockdown statistically different from an siRNA-only control.
Overall, we have summarized the key concepts and trends

that relate the molar mass of polycationic vectors to their
performance. Although particular trends are observed for
specific polycationic systems, the lack of a general structure-
property relationship that can be applied to all polymeric
vectors (or even the contradictory observations between
studies on the effects of molecular weight in gene delivery)
implies that molar mass will still be one of the key parameters
that needs careful optimization when designing new poly-
cationic systems. This is especially true for star, branched, graft,
and self-assembled vehicles, where molecular weight is
intrinsically tied to other properties, such as degree of
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branching, number of arms, number of end groups, and
aggregation number.
3.3. Selection of Charged Groups

3.3.1. Nitrogenous Cations. The benchmark design for
synthetic gene delivery vectors centers in the incorporation of
cationic charges into macromolecules that can electrostatically
bind to nucleic acids (Figure 16). Typically, these cations

consist of nitrogen-based moieties incorporated into the
polymer chains by direct polymerization or by post-polymer-
ization modifications. Additionally, they can be incorporated
into a variety of different repeat units based on PEI, acrylates,
acrylamides, sugars, peptides, and more. Nitrogenous cations,
such as ammonium (from primary to quaternary), imidazo-
lium, and guanidinium, as well as combinations of these within
the same polymer structure, are predominantly used
throughout the nonviral gene delivery literature. The type of
amine-based cationic center determines the pKa of the
resulting polymer, and therefore it dictates the percentage of
protonated amines. Additionally, finding the “right” pKa is
often cited as a way to improve an endosomal escape through
the proton sponge effect (Section 2.4).183 For polymers
containing alkyl-substituted amines, the type of amine
(primary, secondary, and tertiary) does not directly dictate
the gene delivery performance. For instance, Leong et al. found
that the amine type surrounding a hyperbranched poly-
(amino)ester with a tertiary amine backbone had little effect
on the transfection efficacy, cytotoxicity, or degradation rate of
the gene delivery vehicle.474 This is likely because the pKa is
dependent on both the number of substituents and the type of
substituent. Furthermore, for many alkyl-substituted amines,
the pKa (∼8−11) is generally too high to see significant
differences between the number of amine substituents
(primary, secondary, tertiary). The pKa values of the amine
groups can be lowered by further adjusting the surrounding
chemical environment so that it is in the range of physiological
conditions. For example, P[Asp(DET)] and poly{N-(N′-{N″-
[N′′′-(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-2-
aminoethyl)aspartamide} (P[Asp(TEP)]) both have pKa
values of ∼6, likely as a result of their closely packed amine
groups.374 PICs of the polyaspartamide analogues and siRNA
displayed low toxicity and high endosomal escape, likely due to
the low pKa, which could be tuned by optimizing the length of
the alkyl spacers between amines.

Beside alkylamines, there are other nitrogenous cations that
have pKa values close to physiologically relevant pH
conditions. Imidazolium cations have a pKa of ∼7, depending
on the functional groups surrounding the heterocycle. Pun and
colleagues compared histidine and lysine as two amino acids in
HPMA-co-oligoamino acid brush polymers.475 It was observed
that when oligohistidine, an imidazole-containing amino acid,
was incorporated at high enough amounts in the statistical
copolymer (>0.53 mmol histidine/gram polymer), the vector
had greater transfection efficacy compared to the lysine-only
derivative. Interestingly, inhibition studies showed internal-
ization through the caveolar endocytic pathway, which does
not rely on endosomal buffering capabilities as much as other
pathways. This is cited as the reason why histidine
incorporation only improved transfection efficacy by a
maximum of three- to fivefold. Long and coworkers
incorporated imidazolium into polyesters for DNA transfection
to HeLa cells observing successful transfection and insignif-
icant toxicity compared to untreated cells.476 Additionally,
quaternization of imidazole-containing polymers can be
performed via post-polymerization modifications. Long et al.
observed that 25% quaternization of poly(1-vinylimidazole)
with 2-bromoethanol was optimal for increased pDNA
binding, higher transfection, and minimal cytotoxicity.477

The percentage of protonated amines determines, in part,
transfection efficacy. This can be modified by monomer pKa
design (as described above) or by copolymerization of cationic
and non-ionic monomers. Fischer et al. compared linear PEI
homopolymers and statistical copolymers containing PEI and
poly(2-ethyl-2-oxazoline) (PEtOx), synthesized through hy-
drolysis of PEtOx for DNA delivery.478 They observed that the
density of PEI units was the most important factor in
determining the ability of the polymer to bind to DNA
andconsequently transfection efficacy, rather than the
total number of PEI units. They observed that higher PEI unit
density led to higher efficacy. However, cytotoxicity improved
with lower PEI density polymers with an equivalent number of
PEI units.
Besides providing the necessary positive charge to complex

DNA, other nitrogenous cations present additional benefits
when incorporated in polymeric gene delivery vectors. For
instance, guanidinium is an especially attractive cation due to
its ability to hydrogen bond with phosphate anions and
guanine, both particularly useful for nucleic acid deliv-
ery.479−487 Pun et al. synthesized brush copolymers based on
oligolysine macromonomers copolymerized with HPMA.449

Comparing the original brush to an analogue containing
guanidinylated lysine groups, it was observed that the
guanidinylated analogues had improved HeLa cell transfection
efficacy. Stenzel et al. observed that micelles containing
zwitterionic side groups, with guanidium and carboxylate
groups, had high cellular uptake and low cytotoxicity.486

Benzimidazole is another promising nitrogenous cation. Algul
and colleagues observed that small-molecule analogues of
benzimidazole improved the transfection efficacy with a GFP-
expressing plasmid likely due to its ability to enhance cell
penetration.488 They found that the analogue with the highest
LogP value and three chloro groups had a 3.5-fold increase in
the transfection efficacy of mammalian cells compared to the
positive control and commercially available transfection
reagent X-tremeGENE HP®, although with a slightly higher
toxicity.

Figure 16. Structures of common cationic moieties used in gene
delivery. Note that imidazolium cations can be linked to the polymer
through R1 and R2 as well.
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3.3.2. Non-Nitrogenous Cations. Additionally, a limited
number of polycations containing charge centers based on
phosphorus and sulfur heteroatoms have been reported for
their use in gene delivery (Figure 17). The relatively scarce use
of these non-nitrogenous polycations in the field is thought to
be due to the few available synthetic pathways for their
preparation as well as concerns for the chemical instability of
the cationic moieties and their precursors in biological relevant
media.489,490 Despite these barriers, the need for more efficient
and non-toxic delivery vectors encourage the use of these type
of cations, which show the promise of better cytotoxicity
profiles and higher transfection efficiencies when compared to
nitrogenous analogues.491 Non-nitrogenous cations present
differences in partial charge distribution between the
heteroatom and adjacent carbon atoms due to the varying
electronegativity in nitrogen, sulfur, and phosphorus atoms,
which is thought to influence the binding of nucleic
acids.489,492 Recent reviews on the synthesis of phospho-
nium-containing polyelectrolytes493 and, in particular, their
application in gene delivery489 are available; therefore, the
focus herein is to summarize recent examples and key studies
that highlight the advantages and nuances of using these
cations in gene delivery.
Long et al. reported the use of phosphonium-containing

polycations as nonviral gene delivery vectors.103,174 Poly-
(triethyl-(4-vinylbenzyl)phosphonium chloride) (PTEP) and
poly(tributyl-(4-vinylbenzyl)phosphonium chloride)
(PTBP)174 homopolymers as well as block copolymers of
PTBP with either poly(oligoethylene glycol methacrylate)
(POEGMA) or poly(2-methacryloyloxyethyl phosphorylcho-
line) (PMPC)103 were synthesized by direct polymerization of
the phosphonium-containing styrenic monomers. PTBP
homopolymers showed enhanced DNA binding and trans-
fection efficiency when compared to their ammonium
analogues, at N/P ratios from 2 to 10, for in vitro transfection
of HeLa cells with pDNA.174 Polyplexes formed between
pDNA and POEGMA-b-PTBP or PMPC-b-PTBP diblock
copolymers showed enhanced colloidal stability compared to
polyplexes formed with PTBP homopolymers and displayed

similar transfection efficiencies and cell viability to jetPEI®
formulations when delivered to HepaRG cells.103 In another
example of direct polymerization of phosphonium-containing
monomers, Mantovani et al.494 reported the synthesis of a
library of polyphosphonium polymethacrylates using RAFT
polymerization and their use for RNA delivery. A comparison
of polymers with different cations (triethyl alkyl ammonium vs
triethyl alkyl phosphonium) and spacers (i.e., the alkyl group
between cation and polymer backbone) revealed stronger
binding with siRNA with a phosphonium polycation made
with a trioxyethylene spacer. Polyplexes formed between
siRNA and this polycation showed high siRNA uptake and
low cytotoxicity but an undetectable GFP knockdown in 3T3
cells.
Post-polymerization modification strategies have also been

employed to introduce cationic phosphonium groups into
polymeric structures. Frećhet et al.495 reported water-soluble
phosphonium-based polycations based on a two-step post-
polymerization modification of polyacrylic acid. Esterification
of poly(acrylic acid) (PAA) with triethylene glycol mono-
chlorohydrin and posterior quaternization of the side chains
with different tris(alkyl) phosphines granted a library of
phosphonium-based polycations. The best-performing polymer
contained triethyl phosphonium pendant groups, and it
exhibited stronger siRNA binding, lower cytotoxicity, higher
gene knockdown, and better serum tolerance than an
analogous polymer with triethylammonium pendant groups.
Similar examples of post-polymerization modification with tris
(alkyl) and tris (aryl) phosphine have also been reported for
the synthesis of phosphonium-based carbosilane den-
drimers496,497 and branched copolymers with poly(ethylene
glycol acrylate) (PEGA).498 An alternative post-polymerization
modification strategy is the conjugation of pre-synthesized
phosphonium moieties into polymeric backbones. This
strategy has been realized through alkylation,499 amidation,500

or photoinitiated thiol−yne addition501 to conjugate pre-
synthesized phosphonium groups into PEI, poly(aminopropyl-
methacrylamides), and degradable polyphosphoester block
copolymers, respectively.

Figure 17. Chemical structures of polycations for gene delivery based on (A) phosphonium and (B) sulfonium non-nitrogenous cations.
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In addition to phosphonium-based polycations, polymers
with tertiary sulfonium moieties are also an alternative to
nitrogenous polycations. Matyjaszewski et al. reported the
synthesis of sulfonium-containing poly(meth)acrylates for their
use in siRNA delivery.502 Their approach is based on
thioether-containing (meth)acrylate monomers that can be
alkylated either before or after polymerization to produce
macromolecules with tertiary sulfonium moieties as pendant
groups. ATRP polymerization using a PEG macroinitiator
granted neutral-block-cationic water-soluble block copolymers.
The ability of these polymers to complex siRNA was a function
of the length of the cationic polysulfonium block. Polyplexes
based on these polymers showed glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) knockdown in vitro in MC3T3s
cells. Similarly, Long et al. reported the conventional free
radical as well as RAFT polymerization of thioether-containing
methacrylate monomers as intermediates in the synthesis of
sulfonium-containing homo and diblock copolymers.490 The
sulfonium-containing polyelectrolytes, obtained via a post-
polymerization alkylation of the thioether side chains with
methyl iodide, contain ∼90% sulfonium repeating units and
were explored as pDNA delivery vectors. These sulfonium-
based polyelectrolytes complexed pDNA at charge ratios
greater than 1, formed colloidally stable polyplexes (in water,
serum-free, and serum-containing media), but showed lower
transfection efficiencies than Jet-PEI in HeLa cells. The
absence of a proton-sponge effect, due to the lack of a
protonatable species, is cited as a potential reason for the lower
efficiencies, hinting to the need of incorporating extra
functionalities to sulfonium-based polycations for pDNA
delivery.

The use of sulfonium-based polycations can bring additional
advantages to the gene delivery field since some of these
macromolecules are inherently degradable. For instance, Shen
et al. reported sulfonium-based polycations with the ability to
degrade into neutral fragments in the presence of reactive
oxygen species (ROS), as a mechanism to release DNA
intracellularly (Figure 18A).503 This was achieved by
combining sulfonium cations, incorporated in the polymer
backbone, with ROS-responsive phenylboronic acid and esters.
Poly(thioethers) varying in the length and composition of
spacers connecting sulfur atoms to the rest of the polymer were
synthesized. Post-polymerization, these poly(thioethers) were
alkylated with methyl triflate, affording polycations with
sulfonium ions in the backbone. Non-degradable versions
without the boronic ester group were also synthesized. These
polycations were shown to efficiently bind DNA at charge
ratios higher than 2 and showed degradation in the presence of
H2O2. Polyplexes based in the best-performing polymer,
6CBE12k, a 12 kDa polymer synthesized with a hexyl spacer
between the sulfonium cations, showed a 2−3 orders of
magnitude higher transfection efficiency than a control 25 kDa
PEI, when tested in vitro in HeLa cells, A549 cells, and
NIH3T3 fibroblasts in the presence of 10% fetal bovine serum.
The transfection efficiency of 6CBE12k polyplexes in ROS
species-depleted HeLa cells, treated with either diphenyleneio-
donium or ascorbic acid, decreased ∼50% with respect to
untreated cells, showing the importance of ROS-mediated
degradation in these systems. The antitumor efficiency of a
formulation with the suicide gene pTRAIL was tested in vivo
in two different mice models (i.p. inoculated mice with A549
and HeLa). The sulfonium-based polyplexes showed a

Figure 18. (A) Upon degradation in the presence of ROS, sulfonium-based polycation 6CBE12k degrades into neutral, non-nucleophilic, small
molecule thioethers. The degradation provides a mechanism for intracellular pDNA release, (B) enhanced transfection, and (C, D) inhibiting
tumor growth and dissemination. Reprinted with permission from ref 503. Copyright 2017 John Wiley and Sons.
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statistically significant reduction of tumor size and weight, in
contrast to controls with PEI, where no reduction was
observed (Figure 18C,D).
Modulating the charge content and type in polyplex

formulations has been regularly utilized as a strategy to
improve their efficacy. We further discussed the implications of
this strategy and present a body of literature that expands on
this and questions the very need of these charges for efficient
gene delivery in Section 5.3. Nonetheless, it is in the nature of
the polymer chemistry field to continue to diversify the types
of macromolecules that can be synthesized, and we thus expect
the preparation of novel polycations based on N, P, S, and
other heteroatoms and their utilization as gene delivery vectors
will continue to be an active area of research.

3.4. Introducing Hydrophilic Moieties

3.4.1. PEGylation. Colloidal stability is a crucial design
parameter especially for in vivo gene delivery. Delivery vehicles
could self-aggregate due to poor stability characteristics
allowing for an expeditious clearance by macrophages in a
size-dependent manner. The high ionic strength of physio-
logical environments is a major factor that can cause delivery
vehicles to become colloidally unstable and aggregate.132

Beyond systemic clearance, cellular internalization, which is
often a delivery bottleneck, is also sensitive to polyplex
aggregation and instability. Additionally, PEI and other amine-
containing cationic gene delivery vehicles are inherently
problematic for in vivo applications due to their inherent
cytotoxicity and the presence of protein-mediated fouling and
aggregation. Negatively charged proteins found within the
blood (e.g., albumin) can adhere to the nanoparticle vehicle,
while creating a surface for protein fibrillation leading to the
adherence of more proteins, such as opsonins.504,505 Opsonins
are readily recognized by receptors bound on macrophages
that facilitate phagocytosis and clearance of foreign materials
or pathogens.506 Protein-serum fouling and poor colloidal
stability leads to a rapid systemic clearance of gene delivery
vehicles. As a consequence of protein fouling (opsonization) or
polyplex aggregation, the RES is able to clear the foreign
particles rapidly. Furthermore, protein fouling can also lead to
particle aggregation causing particle entrapment in capillaries
of the RES.119,507,508 Aggregation or particle size increase can
significantly affect the clearance of the particle by compound-
ing the specific clearance with non-specific clearance routes.
Additionally, van der Waals, electrostatic, and hydrophobic
forces can also promote further protein aggregation with the
vehicles in vivo.507,509 Protein fouling, regardless of whether it
proceeds rapidly or gradually, will inevitably lead to clearance
from the blood by macrophages and necessitates mitigation.510

Systemic clearance should be minimized in order to maximize
delivery of vectors.
PEG has a long track record of being a viable option for

addressing the challenges associated with in vivo applications
of gene delivery vectors. PEGylation affords systems with a
hydrophilic non-ionic inert corona that inhibit protein
interaction, giving rise to its “stealth sheath” properties,
described in 1977 by Davis et al.511 Since then, the application
of PEG has expanded, and its FDA “generally recognized as
safe” designation has allowed for an expedited processing of
medical applications, including for gene delivery.
There are several factors that need consideration when PEG

is incorporated into a gene delivery system. In general, PEG
chains offer steric repulsion that counteracts other intermo-

lecular forces that drive proteins to adhere to positively
charged complexes and encourages fibrillation. This repulsion
also stems from a large excluded volume and a dense hydration
cloud. The hydration cloud is produced by the hydrophilic
nature of PEG, which grants a layer of two to three water
molecules per PEG unit.512 The efficiency of this “shielding
effect” from proteins and other detection avenues can be
tailored through a selection of the PEG molecular weight and
architecture, as well as optimizing the grafting density.100,513

Molecular weight and density can improve the steric repulsion
of PEG up until a threshold∼5 wt % or at least 2000 Da
which would result in a significant shielding at the lowest PEG
content.513,514 For polymer brushes, density also plays a role in
the PEG conformation. A more densely-packed PEG segment
will resemble more of a comb structure, whereas a lower
density is depicted as a “mushroom” shape. A higher density of
PEG chains across a smaller backbone length will force the
chain to extend, leading to fewer available conformational
changes (Figure 19).515 The reduction in conformations will
inhibit proteins that are larger than the interbrush spacing from
penetrating the hydrophilic shield and would enable binding to
the cationic segment or surface.515,516 However, if the protein
is smaller than the overlap spacing between PEG brushes, there
is little resistance against protein aggregation. The reduction in
entropy following the loss of excluding water molecules from

Figure 19. Schematic diagrams of PEG configurations on the upper
hemisphere of a polymeric nanoparticle. (A) The low surface
coverage of PEG chains leads to the “mushroom” configuration
where most of the chains are located closer to the particles surface.
(B) The high surface coverage and lack of mobility of the PEG chains
leads to the “brush” configuration where most of the chains are
extended away from the surface. Reprinted with permission from ref
513. Copyright 2006 Elsevier. (C) The mushroom-to-brush transition
is highlighted, from a surface view, where PEG density forces chains
to extend. Reprinted with permission from ref 518. Copyright 2006
Springer Nature.
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the PEG brushes is much lower compared to mushroomlike
PEG chains.516,517

Kataoka and coworkers demonstrated the importance of a
higher PEG density (i.e., the crowdedness of the stealth shield)
in prolonging the systemic circulation of PLL rods.519 More
recently, they have shown how PEGylating cationic micelles
affects their stability under shear.520 The shear stresses in
blood flow impair the efficient fouling protection provided by
PEGylation, which they suggested could be mitigated by
crosslinking the polycation chains through disulfide bonds.
Liang et al. further expanded on the effects of blood shear flow
on PEGylated carriers by demonstrating that a denser
incorporation of a PEG protective layer will withstand a
higher shear flow before becoming perturbed and exposing the
cationic core to serum proteins.521 A critical shear flow can be
quantified via properties such as surface tension, PEG grafting
density, and the elasticity, which agrees well with the work
from Liang’s group.522 At low shear flows, the PEG is disturbed
exposing the DNA/cationic core to protein, resulting in
complex aggregation. At higher flow rates, the force deforms
the complexes into smaller sizes thus preventing further
aggregation. Finally, at the extreme end of high shear rates, the
core of the micelle is forced to restructure and organize to
incorporate protein aggregates within the core highlighted
(Figure 20). Overall, the transitions between these regions can

be tailored by increasing the PEGylation density. The grafting
density and molecular weight of the PEG hydrophilic sheath
are two key parameters to consider while improving polyplex
resistance towards protein fouling.
In addition to preventing protein aggregation, PEG provides

complexes with a hydrating and charge-screening layer from
other complexes in the same system.523,524 PEGylated
polyplexes have shown a reduction in their zeta poten-
tials.525−527 This charge screening leads to reduced polyplex
aggregation. Hanes et al. were able to determine the grafting
density or surface coverage of the PEG block via zeta-potential
readings.528 Further screening from PEG is beneficial to reduce
contact with other charged entities such as extracellular DNA
nucleases, heparin, heparin sulfate, or mucus.529−531 Limiting
the interactions with these macromolecules minimizes the
likelihood of payload degradation, loss, or immobilization. In
an early instance of incorporating PEG into gene delivery

vehicles, PEG was shown to offer improved colloidal stability
and reduced aggregation and immunogenicity to a PEI gene
delivery vehicle.532 Wagner et al. coupled 5 kDa PEG
derivatives to the primary amino groups of PEI, which
demonstrated a reduction of interactions with blood
components and an improved colloidal salt stability.533

PEGylation strategies have also been applied to other common
cationic blocks, such as PLL,365,534,535 PDMAEMA,536 and
polyspermine.537 Park and Healy grafted a lactide-PEG block
onto a lysine polymer to enhance DNA binding and
protection.538 This study demonstrated the importance of
incorporating PEG to protect against DNase I degradation, an
enzyme detrimental to the cargo. DNase I degradation is
reliant on fitting into the minor groove of DNA; the lactide-
PEG block hinders proper alignment and displays improved
resistance towards DNase I compared to lysine homopol-
ymer.538

Advances in polymer architecture have helped overcome the
challenge of proper PEG spacing. PEG spacing is a parameter
that will dictate if small proteins are to be able to penetrate and
adhere to the delivery vehicle. Polymerizing PEG brush
monomers or using more complex PEG architectures like
multifunctional end groups of PEG resembling a star, dendritic,
or bottlebrush shape helped reduce the spacing between PEG
chains.539,540 Arima et al. showed a sevenfold longer blood
half-life when they compared PEGylated fourth- and third-
generation polyamidoamine dendrimers. In addition, PEGyla-
tion of a fourth-generation dendrimer yielded a product with
negligible cytotoxicity.541

PEGylation has also been used to directly modify nucleic
acids. Zhang and coworkers synthesized a densely packed PEG
bottlebrush vector containing covalently bound siRNA. The
PEG bottlebrush was synthesized through ROMP copoly-
merization of a norbornenyl PEG monomer and a functional
norbornene monomer that allowed for the introduction of
azide groups post-polymerization. The brushes were then
functionalized with siRNA containing clickable dibenzocy-
clooctyne groups.542 The resulting non-cationic vehicle
displayed excellent protection of nucleic acid cargo from
degrading enzymes and protein fouling while allowing for
cellular uptake and delivery of cargo to desired tumor cells.542

Nuclease degradation was monitored by fluorescence masking
with an antisense RNA strand. Yet, when ribonuclease III was
added to quench the binding, the bottlebrush displayed a
prolonged half-life compared to control groups. Using dense
PEG coatings is of particular interest in mucous-membrane
gene delivery.100,543 PEGylation, once used as a mucoadhesive,
can be tailored to allow fast penetration and reduced
immobilization in viscous media and mucus, allowing for the
use of polymeric gene delivery to target the lungs,544 brain,545

vaginal tissue,546 or ocular tissue.547,548 For example, Hanes et
al. synthesized a PLL-b-10 kDa PEG polymer, which was found
to effectively deliver genetic cargo in vivo to the brain, eye, and
lungs.544 However, they found this system is immobilized in
the sputum of cystic fibrosis patients. Immobilization was also
observed in the vitreous humor of the eyes or spinal fluid of
the brain where the viscous properties match the mucus found
in lungs of cystic fibrosis patients. To improve the mucus
penetration of their gene delivery system, they compared
different lengths of PEG blocks (2, 5, 10 kDa). As a control,
they formulated a non-ionic polystyrene-b-2 kDa PEG (PS-b-
PEG). They found that the shorter PEG block diffuses more
quickly, most likely due to the smaller size fitting through the

Figure 20. Schematic and graphical display of shear induced
deformation and aggregation of PEGylated complexes in the presence
of serum. Reprinted with permission from ref 521. Copyright 2020
Royal Society of Chemistry.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

AB

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig20&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


pores of the mucus network. Interestingly, the PS-b-PEG
penetrated and diffused the most in the mucus suggesting that
an even higher density of PEG is required to penetrate mucus
and reduce interactions between the mucus and the PLL.544

Although careful PEGylation of cationic polymer gene
delivery vehicles can overcome many of the challenges
associated with in vivo delivery of these vehicles, one serious
issue remainsthe marked decrease in cellular internalization
that comes with PEGylation. Wagner and coworkers showed
that moderate PEGylation could enhance transfection of PEI
polyplexes; however, they also showed that further increasing
the extent of PEGylation could decrease the uptake of the
polyplexes.247 Other groups have shown a similar trend of PEG
incorporation inhibiting the uptake of gene delivery
vehicles.285,549,550 The same phenomena that accounts for a
reduction of protein fouling and particle aggregation also
reduces the ability of PEGylated gene delivery vehicles to be
internalized efficiently. Many researchers refer to this problem
as the PEGylation dilemma. This apparent reduction of gene
delivery efficacy has been addressed in the field through the
incorporation of active targeting groups or cell binding motifs.
Targeting groups accessible by the cell help to facilitate
internalization without losing the stabilizing and anti-fouling
properties of the PEG groups. For example, the incorporation
of aptamers,551,552 antibodies,553,554 cell-penetrating pepti-
des,530,555 peptides,556,557 and other targeting ligand moi-
eties558 has been shown to increase the internalization of
nanoparticles. Others have specialized in adapting responsive
PEGylated systems to be responsive to environmental stimuli,
like pH, where PEG chains are cleaved from delivery vehicles
in response to external triggers, thereby overcoming the
shortcomings of PEGylation.559−561

Recent evidence also shows that PEGylation can elicit two
potential responses upon administration, shown in Figure
21.549,562−564 The first is a chronic immunogenic response
leading to an accelerated blood clearance (ABC) of PEGylated
systems. The second is an acute pseudoallergenic response
leading to complement activation-related pseudoallergy
(CARPA) and hypersensitivity reactions to PEGylated
systems. Either of these responses should lead to concerns of
the safety and efficacy of PEGylated materials. Szebeni et al.
provide an excellent discussion and review of such phenomena
surrounding PEGylated material.563

Much of the early attention given to the ABC phenomena
was towards PEGylated liposomes.565,566 Not to be over-
looked, this knowledge should be translated to the design of

PEGylated polymeric nanoparticles.567,568 Kiwada and cow-
orkers showed that the spleen has an integral role in the
phenomena when they performed a splenectomy in rats and
measured levels of immunoglobulin M (IgM) and G (IgG).569

Rats that were splenectomized before being injected with PEG-
containing liposomes showed the same levels of IgM as the
control vehicle, whereas the injected group had an eightfold
greater elevated IgM level. Recently, they also investigated the
role IgM takes in the clearance of PEGylated complexes. They
discovered that both IgM and marginal zone containing B-cell
(MZ-B cells) activation are required for splenic cells to be able
to associate with PEG complexes.570 IgM in serum-free
environments, however, does not facilitate the adhesion and
removal of PEG liposomes. Kiwada and coworkers reported
that IgM binds to the PEG complexes. In the presence of
serum, the complement system is activated, where the
formation of an immune complex containing the PEG
liposomes, IgM, and complement proteins can be recognized
via the MZ-B cell’s complement receptors. A serious issue
arises for the incorporation of PEG to a delivery vehicle if a
patient already possesses anti-PEG IgM; studies have shown
patients have displayed anti-PEG antibodies without
PEGylated nanoparticle exposure.571,572 This is an alarming
revelation, since patients who have never been subjected to
PEGylated nanoparticles could elicit an unwanted severe
immune response or have the PEGylated therapeutic rapidly
eliminated. Lai and coworkers demonstrated that anti-PEG
antibodies can be temporarily sequestered with freely
circulating high molecular weight (40 kDa) PEG in addition
to PEGylated therapeutics for at least 48 h.573 Gabizon and
Szebeni recently shared their expertise on avoiding comple-
ment activation, the dangerous phenomenon associated with
PEGylated nanomedicines, and reviewed clinical and exper-
imental data relating to ABC.563 Furthermore, Truong and
coworkers published a review that details other factors that
affect the immunogenicity of PEG in humans and animals.574

An additional problem that PEG encounters with long-term
therapeutics is oxidation. Although PEG is touted as a safe
compound due to its low toxicity profile, reactive oxygen
speciessuch as hydroperoxides and peroxide free radicals
are generated from the metabolism of polyethers, which can be
problematic.575 These free radical byproducts can lead to
oxidative stress causing tissue damage, reminiscent of age-
related and neurological diseases.576 Likewise, payloads
containing peptides, proteins, or DNA are known to be
susceptible to peroxide radicals.577,578 Oxidative damage to

Figure 21. (A) Pathways for adverse immune effects to nanoparticles. The highlighted pathways are specific for PEG and the immunogenic
consequences for using PEGylated materials. (B) Positive feedback cascade of PEGylated material activating the complement system (C activation)
leading to CARPA and ABC. Reproduced with permission from ref 564. Copyright 2017 John Wiley and Sons.
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DNA represents the prevalent form of DNA damage within
human cells.579 Thus, a complete pharmacokinetic analysis of
the metabolic byproducts is needed before PEG is incorpo-
rated into a genetic vehicle due to the potential damage of the
cargo or a neutralization of the therapeutic effect. Kumar and
Kalonia presented an effective vacuum method to remove the
majority of peroxide free radicals formed before implementing
commercially available PEG polymers.580 When the majority of
peroxides formed from PEG polymers is removed, the cargo is
less likely to be degraded by the vehicle. As stated before, PEG
is generally regarded as safe, and only at exceedingly high doses
has PEG been seen to present adverse effects. Taupin et al.
have reviewed extensively the toxicity, metabolism, and
clearance of PEG while addressing the previous concerns.581

Overall, PEG excels at protecting and stabilizing polyplex
formulations and increases their blood circulation half-lives. Its
incorporation can be tailored to meet specific characteristics
through its molecular weight, density of chains, and
architecture, and it continues to be a popular choice among
researchersespecially in combination with targeting moi-
etiesfor its biocompatibility profile, stability, and fast-track
FDA approval record. However, the oxidative stress induced by
PEG and its immunogenic effects must be taken into
consideration, especially for therapeutic applications involving
long-term use.
3.4.2. Zwitterionic Moieties. To circumvent the potential

immunogenicity and reduction in internalization triggered by
PEGylation, researchers have turned to alternative hydrophilic
moieties. Zwitterionic polymers are one such class of polymers
with the potential to replace PEG as the hydrophilic moiety of
choice when designing polycations for nonviral gene delivery.
Unlike PEG, zwitterionic polymers are made of neutral
monomers composed of stoichiometrically equivalent amounts
of positively and negatively charged ions. Schlenoff has
extensively and concisely presented arguments and data that
postulate the mechanism for zwitterion’s anti-fouling proper-
ties.582 Briefly, zwitterionic molecules provide favorable
environmental interactions via four distinct mechanisms:
watery surface, structuring of water, steric effects, and ion-
coupled forces. Like PEG, zwitterionic molecules are effective

at attracting water molecules and creating a dense hydration
cloud.583,584 The hydrophilicity of zwitterionic molecules is
driven via strong dipole interactions rather than perturbed
hydrogen bonding as seen with PEG.585−587 This facilitates the
ordering of water molecules to resemble bulk water in a
thermodynamically favorable way. Thus, the perturbation of
water molecules during protein adhesion imposes a greater
thermodynamic penalty. Others have used similar strategies for
polymer design by increasing the grafting density of
zwitterionic monomers for enhanced anti-fouling and colloidal
properties for brushlike polymers.588,589 Ahmed and Leckband
found a non-monotonic correlation between the amount of
protein adsorbed and grafting density for poly(zwitterionic)
brushes (Figure 22),589 which contrasts with the linear
correlation present for PEGylated surfaces.
Recent examples of zwitterionic incorporation leading to

minimal protein fouling has rapidly increased the focus on
zwitterionic molecules to enhance anti-fouling behavior, salt
stability, and biocompatibility.590−593 Figure 23 shows three
zwitterionic monomers that gave rise to polymers that
demonstrate minimal protein fouling: sulfobetaine methacry-
late (SBMA), carboxybetaine methacrylate (CBMA), and 2-

Figure 22. Depiction of protein adsorption depending on grafting density of poly(sulfobetaine methacrylate) (P(SBMA)) zwitterionic brushes. (A)
At the highest grafting density, proteins are unable to penetrate and adhere to the polymer. (B) With reduced grafting density, the polymer chains
are extended, but the protein can penetrate and adhere to the polymer. (C) At intermediate grafting densities, the polymer is flexible and exposes
more of its charges, allowing for more sites for protein adherence. (D) At the lowest grafting densities, the polymer is perceived as a mushroom and
can be self-coiling, which can hide and hinder protein adherence. (E) A minimum limit of protein adherence occurs even without the charge found
with P(SBMA), where protein adheres to the surface of the nanoparticles. Reprinted with permission from ref 589. Copyright 2020 John Wiley and
Sons.

Figure 23. Commonly used zwitterionic monomers sulfobetaine
methacrylate (SBMA), carboxybetaine methacrylates (CBMA), and 2-
methacryloyloxyethyl phosphorylcholine (MPC).
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methacryloyloxyethyl phosphorylcholine (MPC).594,595 Nota-
bly, the betaine derivatives have a more established history and
are easy to synthesize. Conversely, MPC monomers originally
difficult to synthesize have been optimized to produce an
inexpensive and pure product able to undergo a controlled
radical polymerization.596,597 The phosphorylcholine func-
tional group of MPC resembles the lipid head group of the
cell membrane, which can be advantageous for both anti-
fouling and cell membrane associations.434,594,598 MPC was
recently shown to alleviate concerns arising with PEG.
Repeated administration of MPC complexes in a murine
model showed minimal histologic or immunogenic side effects
while simultaneously showing a twofold increase in internal-
ization compared to jetPEI®, a commercial transfection
reagent.599,600 The work carried out by Giorgio and Duvall
was inspired by previous work that demonstrated high
molecular weight zwitterionic polyplexes that showed
enhanced biocompatibility and uptake compared to PEG
analogues.593 As an added benefit, zwitterionic polyplexes
showed enhanced resistance to destabilization from increasing
salt concentration. Zwitterionic polymers are known to be
unstable or form collapsed coils in water but gain stability with
increasing ionic strength from salt ions.601 Zwitterionic
polymers are not a catch-all replacement for PEGylation.
Most recently, Giorgio and Duvall demonstrated a smaller
therapeutic window for MPC than PEG containing polyplexes,
requiring a deeper mechanistic understanding of differences
between zwitterionic polymers and PEG.602

Erfani and coworkers highlight the effects of zwitterions and
their interactions with biomolecules, noting key behavioral
differences arising between zwitterions and PEG derivatives in
aqueous media.603 A key behavioral difference between PEG
and zwitterionic polymers is their protective action: with well-
hydrated and extended polymer chains, the zwitterionic
polymer is able to inhibit both aggregation of complexes and
degradation of its payload. Like PEG, both the molecular
weight and grafting density of the zwitterionic polymers need
to be considered, but the salt concentration and the
zwitterionic self-association need to also be considered to
provide superior hydration screening.604−606 Jiang’s research
group, which has applied zwitterionic polymers to solve
numerous biomaterial challenges, has employed both molec-
ular simulation and experiments to shed light on the roles of
zwitterionic charge density, composition, and architec-
ture.607−609 Reduction in the payload degradation of the
delivery vehicle arises from salts found near the chains. Salts
are primarily associated with the anti-polyelectrolyte effect
between zwitterionic chains but also provide a stabilizing effect
for proteins.603 Polymer architecture can tune and amplify the
stabilizing effect of zwitterions and is reviewed by Erfani and
coworkers.603

Responsive polymers have been designed to respond to their
environment and, upon the application of the right environ-
mental trigger, degrade into zwitterionic materials. The goal for
producing a zwitterionic end-product is to reduce the toxicity
of the system. Like many cationic polymers, the cationic nature
needed for condensing the genetic material is often a downside
due to its inherent toxicity. By engineering a polymer and
producing a labile end group, Jiang and Carr addressed this
concern by synthesizing a carboxybetaine ester diblock
polymer containing a quaternary amine able to condense
DNA, a tertiary amine able to buffer its environment, and an
end group able to undergo hydrolysis to form a zwitterionic

polymer resulting in minimal toxicity.610 This proof-of-concept
study showed that this polymer system was able to produce a
20-fold increase in transfection efficiency compared to
branched PEI without the associated cytotoxicity. Similar
methodologies were carried out to produce a DNA vaccine
platform, whose major complication for success was its
associated toxicity.611 Jiang and Carr further optimized their
responsive polymer system by comparing the spacer length
between the cationic moiety and the anionic moiety, as well as
their monomer end group needed for hydrolysis.612 They
found that a single carbon spacing was sufficient to shift the
pKa of the tertiary amine within the endosomal pH and that an
ethyl ester end group provided an order of magnitude higher
transfection while remaining nontoxic. Notably, they synthe-
sized an ultraviolet (UV)-labile end group to determine the
kinetics of DNA release from their polyplexes. After their
complexes were irradiated with UV light for 1 h, ∼73% of the
DNA was released, demonstrating the benefit of switchable
polymers for effective release of DNA upon cellular entry. This
work highlights the benefit of switching potentially cytotoxic
cationic polymers into nontoxic zwitterionic polymers for
effective gene delivery.
In addition to poly(zwitterions), polyampholytes are starting

to be examined for their protein antifouling and colloidal
stability properties.613 Like zwitterionic polymers, polyampho-
lytes are charge-neutral ionic polymers that contain both
cationic and anionic groups. However, unlike zwitterionic
polymers, polyampholytes may not contain both cationic and
anionic entities within the same monomeric unit and may not
be charge-neutral at the repeat-unit level. There has been very
little work with incorporating alternating singly charged
monomers into a polymer delivery vehicle for gene therapy,
but the benefits of incorporation may already be apparent, as
seen in zwitterionic monomer incorporation. With carefully
designed sequences of singly charged monomers, a plethora of
options exists for realizing the desired spatial organization of
positively and negatively charged groups along the poly-
mer.518,614 Emrick and Jayaraman et al. showed the resulting
relationship of distributing zwitterionic polymers throughout a
cationic comb polymer.446 At 50 mol % incorporation of
zwitterionic polymers, the total polymer still maintained its
cationic nature while providing high levels of genetic cargo
delivery (double the amount compared to the control) and
viability (>97%).446 When this charge is maintained without a
screening effect from the zwitterionic polymer being
incorporated, this polymer is able to complex the DNA.
Furthermore, the incorporation of zwitterionic polymers into
the delivery system weakens the strength of the DNA binding.
The DNA binding can be optimized through stringent
incorporation and control over monomer addition to facilitate
both reliable protection of the genetic cargo as well as cargo
unpackaging upon cellular import.
In summary, the incorporation of zwitterionic into

polycationic vectors affords colloidally stable polyplexes with
suitable cytotoxicity profiles. Their use, limited by the small
number of commercially available zwitterionic monomers, will
continue to grow as a response to the growing biosafety
concerns of the use of PEGylated polymers.

3.4.3. Carbohydrate Monomers. One final class of
hydrophilic moieties that confer colloidal stability and
enhanced targeting to polycationic vectors is carbohydrate
monomers. These monomers carry glycan moieties that can be
incorporated either in a polycation backbone or as pendant
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groups. Like PEG, the hydrophilic nature of carbohydrate-
derived glycopolymers arises from their hydrogen-bonding
capability. Similar to ether linkages in PEG, carbohydrates can
form a dense hydration cloud from their abundant hydroxyl
groups, providing enough steric and hydration repulsion
towards proteins and aggregation between complexes.
Acetylation of the hydroxyl groups is thought to extinguish
the hydrophilic nature of the glycopolymers, reducing its
overall colloidal stability. Previous incorporation of sugar
moieties into polymers were avoided due to its tedious
requirement of protection and deprotection of hydroxyl groups
during polymerization. The development of a variety of
methods allowing for the synthesis of glycopolymers including
controlled radical polymerizations and without the need of
using protected monomers415,615−617 has helped the develop-
ment of this class of polymers for several applications. Yu and
Kizhakkedathu developed glycopolymer brushes for protection
against protein interactions.618 These carbohydrate-containing
monomers mimic the glycocalyx of cell membranes. The
glycocalyx has many cellular processes, but an important trait
worth mimicking is the prevention of non-specific cell or
protein interaction.619 The modified surface substrate with
glycopolymers showed super-hydrophilicity via low contact
angles (10°).618 When placed in protein solutions containing
bovine serum albumin and fibrinogen, the glycopolymers
provided excellent protection from protein adsorption.
Molecular dynamics simulations showed that hydroxyl-rich
glycopolymers bind water molecules tightly, further justifying
the resistance displayed towards protein adsorption and the
need for maintaining the hydroxyl group’s integrity after
polymerization.620

Beyond similar traits to PEG, glycopolymers offer the
additional benefit of biocompatibility due to the composition
being of naturally occurring sugar moieties. The degradation of
glycopolymers can be easily metabolized into important
biomolecules found within cells. Narain et al. used this
concept and formed hyperbranched statistical copolymers of

aminoethyl methacrylate (AEMA) with sugar-based monomer
2-lactobioamidoethyl methacrylamide.621 Polyplexes formed
from these glycopolymers and siRNA elicited minimal toxicity,
most likely due to the acid-catalyzed degradation of the 2,2-
dimethacryloyloxy-1-ethoxypropane branches in the delivery
vehicles. Small polymer fragments degrading in acidic
conditions are then more readily processed by the cell due
to its recognizable sugar structure. Ahmed and Narain
demonstrated the enhancement of the delivery system’s
stability, toxicity, and delivery by incorporating carbohydrates
within polymeric vehicles. After 3-gluconamidopropyl meth-
acrylamide was statistically incorporated, regardless of high or
low amounts, these copolymers outperformed their cationic
homopolymers roughly twofold in transfection efficiency and
provided minimal toxicity towards cells when compared to
untreated cells. Additionally, the cationic homopolymers
PAEMA and poly(N-(3-aminopropyl) methacrylamide)
(PAPMA) with no carbohydrate substitution only had a
viability of ∼20%.615
Unlike the challenges highlighted with PEG, glycopolymers

may circumvent the PEGylation dilemma by allowing the
delivery vehicle to interact and target native carbohydrate-
binding domains (CBDs) present on the cellular surface.487,622

By using a hydrophilic carbohydrate block made of 2-deoxy-2-
methacrylamido glucopyranose (MAG), these polymers can
offer a similar hydrophilic sheath shield providing the
necessary steric effects that inhibit complex aggregation.623,624

Furthermore, incorporating a methacrylamido N-acetyl-D-
galactosamine (GalNAc) unit can promote a selective binding
with asialoglycoprotein receptors (ASGPRs) found on
hepatocytes shown in Figure 24.622 Cationic diblocks
synthesized with GalNAc as the hydrophilic block displayed
similar colloidal stability as that of PEG-based analogues, as
well as enhanced targeted gene delivery both in vitro and in
vivo. During in vivo studies in mouse models, these diblocks
accumulated in the liver at concentrations 70 times higher than
those observed in the lungs. Additionally, polymer composition

Figure 24. P(MAGalNAc)-b-P(AEMA) diblock glycopolymers display high affinities to ASGPRs on liver hepatocytes, allowing for a liver-targeted
gene delivery. Adapted with permission from ref 622. Copyright 2016 American Chemical Society.
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and morphology effects were determined by comparing block
and statistical copolymers and terpolymers incorporating MAG
and either one or both cationic monomers AEMA and
DMAEMA.289 It was found that block copolymers formed
more stable complexes in protein-containing media compared
to statistical copolymers. Yet luciferase gene expression was not
inhibited, concluding both architectures could efficiently
deliver their genetic payload indicating that these polymers
are still able to promote cell entry at high rates unlike similar
structures with PEG (which show a decrease). However,
Narain et al. reported a slightly different trend within their
study, which showed statistical glycopolymers made of 3-
gluconamidopropyl methacrylamide outperforming diblock
glycopolymers.615 Even though both studies used HeLa cells,
with differences in polyplex concentration and the sugar used it
is hard to draw a direct comparison of performance between
block and statistical polymer architecture. In a similar study, a
diblock copolymer formed with MAG and AEMA showed
effective colloidal stability in protein-containing media over
time compared to leading industry standard transfection
reagents, jetPEI®and Glycofect.471 Furthermore, when
compared to a PEG analogue with a similar molecular weight
and architecture, the diblock glycopolymers from this study
demonstrated better colloidal stability with increasing salt
concentration, again highlighting glycopolymers’ potential as a
PEG alternative.625

Another carbohydrate that has been used in lieu of MAG is
trehalose, a disaccharide of glucose. Trehalose has an
established track record as a super-hydrophilic functionality
incorporated into gene delivery vehicles with the added benefit
of serving as a lyoprotectant.104,105,626,627 Reineke and
coworkers were first to produce trehalose-containing glyco-
polymers via click polymerization.627 Their work demonstrated
the stability and efficiency to deliver nucleic acids to cells with

a trehalose-containing polymer in serum or serum-free media.
This work established that a short disaccharide like trehalose
can provide a smaller, less bulky, alternative to PEG. Further
reports focused on incorporating trehalose into gene delivery
vehicles by formulating diblock copolymers of trehalose with
varying degrees of AEMA.104 This further gathered evidence of
trehalose being able to act as a lyoprotectant, expanding from
the paper’s finding that poly(trehalose) is able to lower the
energy of phase transitions between liquid and solid in an
aqueous solution. The lowering of energy also allows for a
minimal loss of biological function after resuspension,
demonstrated by the uptake of polyplexes by U-87
glioblastoma cell and resulting in lower cytotoxicity compared
to untreated cells.104

Further work from the Reineke group showed excellent
colloidal stability of cationic-trehalose copolymer in both salt-
and serum-containing media, while simultaneously promoting
high gene delivery with low toxicity in vitro and in vivo.105

Additionally, the trehalose-containing polyplexes were recon-
stituted after lyophilization displayed minimal differences in
polyplex size, measured via dynamic light scattering (DLS) and
transmission electron microscopy (TEM), without a loss in
biological function (Figure 25).104 The ability to reconstitute
polyplexes from a dry preserved powder could promote the
storage stability and making formulation preparation easier
which would be advantageous for clinical translation and
manufacture.
Overall, glycopolymers stand as a suitable bio-inspired

alternative to PEG, which can be tailored with a variety of
beneficial characteristics, such as serving as a lyoprotectant, a
receptor target, or stabilizing agent. Recently, the Reineke
group published a review article of work with cationic
glycopolymers used for gene delivery highlighting their
therapeutic benefits like degradability, targeting, and stabil-

Figure 25. (A) pDNA polyplexes formulated from poly(methacrylamido trehalose)-b-PAEMA P(MAT-b-AEMA) diblock glycopolymers preserve a
high transfection efficacy (∼60% luciferase expression in U87 cells) after lyophilization in contrast to controls formulated with jetPEI®, Glycofect,
and a non-carbohydrate PEG-AEMA diblock copolymer. Reprinted with permission ref 105. Copyright 2016 American Chemical Society.(B) Cell
survival was also superior to those of commercial controls. (C) Chemical structure of P(MAT-b-AEMA). Reprinted with permission from ref 104.
Copyright 2012 American Chemical Society.
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ity.628 The use of glycopolymers thus continues to be an active
area of research in our laboratories as well as many others.
3.5. Introducing Hydrophobic Moieties

3.5.1. (Co)polymers with Hydrophobic Moieties.
Introducing hydrophobicity has been utilized as a tool to
fine tune polymeric vectors in an effort to increase their gene
delivery efficiency.492,629−633 As previously discussed, the
requirements for nucleic acid complexation outside and inside
the cell are seemingly contradictory. Outside the cell, the
vectors must compact and protect DNA from degradation and
remain stable against competitive binding from negatively
charged proteins present in the plasma. Polymers must also
facilitate cellular internalization, as well as endosomal escape.
On the other hand, once in the cytosol, the vector must release
the nucleic acids, doing this at the right time, for the
transfection to occur. Nucleic acid binding must therefore be
carefully optimized, and introducing hydrophobicity is one of
the parameters in the polymer chemist’s toolbox. The type
(e.g., linear alkyl, cyclic alkyl, lipidic, aryl, cholesteryl) and
content of hydrophobic moieties that are introduced into a
vector are critical parameters that must be optimized in a case-
by-case scenario; introducing a hydrophobic moiety simulta-
neously affects several of the various processes that are
conducive to a successful transfection. The content of

hydrophobic moieties in polymeric vectors has an upper
limit since the aqueous solubility of the polymers and colloidal
stability of the polyplexes must be ensured. Multiple reviews of
the hydrophobic modification of polymeric cations and how it
affects nonviral gene delivery are found in the litera-
ture.492,629−633 Our focus in this section is to highlight the
key concepts mentioned above with relevant and recent
examples.
Incorporating hydrophobic groups into a polymeric vector

induces hydrophobic−hydrophobic interactions with nucleic
acids that modulate their binding.492 Additionally, introducing
hydrophobic moieties into polycations decreases their charge
density, which helps prevent polyplex destabilization by
negatively charged proteins present in serum.634,635 For
instance, Bajaj and coworkers show that a tailored hydro-
phobization of primary and secondary amines of low molecular
weight PEIs (Mw 800−2000 Da) with cholesteryl groups
afforded vectors that showed a high pDNA transfection
efficiency (>60% GFP-positive HeLa cells) even in the
presence of up to 50% serum during transfection.636 This is
critical since polycation-based polyplexes exhibit low trans-
fection in the presence of serum, hindering in vivo applications.
Polyplexes with an enhanced serum stability display longer
circulation times and slower renal clearance.

Figure 26. (top) Duvall et al. synthesized a library of PEG-b-P(DMAEMA-co-BMA) diblock with varying incorporation of the hydrophobic BMA
(0-50B) comonomer in the cationic siRNA binding block. (middle) The diblock copolymer with 50 mol % of hydrophobic BMA (50B) showed
optimum cell internalization, gene knockdown, and cell viability in vitro. (bottom) The 50B copolymer displayed enhanced tissue biodistribution in
vitro due to longer circulation times and slower renal clearance. Reprinted with permission from ref 644. Copyright 2013 American Chemical
Society.
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The different strategies that have been employed to
introduce hydrophobic moieties into polycationic vectors fall
into one of three categories: post-polymerization modification,
copolymerization with hydrophobic monomers, and end-group
modification. Low molecular weight PEI is reported as a prime
candidate for introducing hydrophobicity to improve its
efficiency.637−643 As discussed above, PEIs of low molecular
weight are less cytotoxic than PEIs of higher molecular weight
but grant lower transfection efficiencies, which can be
improved by different hydrophobic modifications. In studies
focusing on the alkylation and acylation of PEI, both the type
of the hydrophobic moiety and the length of the alkyl chains
have been optimized extensively.
Introducing hydrophobic moieties has also been explored in

other cationic polymer systems. For instance, Duvall et al.
synthesized diblock copolymers composed of poly[(ethylene
glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl
methacrylate)] (PEG-b-P(DMAEMA-co-BMA)) via a RAFT
copolymerization of DMAEMA and BMA using a PEG macro
chain transfer agent (macro-CTA) (Figure 26).644 The
obtained vectors showed promising results for the delivery of
siRNA in vivo. The molar content of BMA in the nucleic acid
forming block was varied from 0 to 75 mol %, and its effect on
the formation of micelles, binding of siRNA, cell uptake,
transfection efficiency, and cytotoxicity was explored. Cell
uptake and transfection efficiencies were evaluated in NIH3T3
fibroblasts, and polymers with 50% BMA showed the greatest

transfection efficiency. The high endolysosomal escape ability
of this polymer and stability against heparan sulfate
contributed to the high performance. In in vivo experiments
in Balb/c mice models, the polymer vector with 50% BMA
incorporation showed better peptidylprolyl isomerase B gene
silencing in the liver, kidneys, and spleen compared with a
diblock copolymer with no BMA. The same system was
explored for the in vitro delivery of pDNA to MDA-MB1-231
human breast cancer cells and IMDBF dermal fibroblasts.645

Engbersen et al.267 studied the effect of acetylation and
benzoylation of bio-reducible poly(amido amines) on the in
vitro transfection of COS cells. The polymers were synthesized
via Michael addition polymerization of N-boc 1,4-diaminobu-
tane with cystamine bis(acrylamide). After cleavage of the boc
groups, the primary amines were modified with acetic
anhydride or benzoyl chloride, targeting different substitution
degrees. Polymers with larger substitution degrees exhibited a
reduced charge density and enhanced buffering capacity as
observed from lower pKa values, when compared with
unsubstituted polymers. Unlike the acetylated derivatives, the
benzoylated polymers self-assembled into nanometric aggre-
gates. The DNA transfection efficiencies with benzoylated
PAMAs (poly(amidoamine)s) were higher than the acetylated
polymers with comparable degrees of substitution, and
moreover they were not affected by the presence of serum
during transfection. The more hydrophobic benzoylated

Figure 27. (A) Kataoka et al. synthesized a series of amphiphilic polyaspartamides containing various amounts and types of hydrophobic moieties.
(B) They employed LogP as a parameter to measure polymer hydrophobicity and relate it to gene delivery efficiency. (C−D) Derivatives with 11
units of cyclohexyl ethyl (CHE11) hydrophobic pendant groups bind efficiently to mRNA and exhibit high luciferase expression efficiencies in
cultured C2C12 cells and fast in vitro transcribed mRNA release within cells. Reprinted with permission from ref 647. Copyright 2019 American
Chemical Society.
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polymers exhibited both serum protection and enhanced
endosomolytic properties, as evaluated via a hemolysis assay.
The quantification of polymer hydrophobicity through

partition coefficients or retention times in a high-pressure
liquid chromatography (HPLC) analysis is useful when
comparing vector libraries that incorporate different types of
hydrophobic units.646,647 For instance, Miyata and Kim et
al.647 showed how the partition coefficient (LogP) can be used
as a metric for the hydrophobicity of polymeric vectors during
their optimization for gene delivery (Figure 27). A poly(β-
benzyl-L-aspartate) parent polymer was synthesized via a ring-
opening polymerization of a N-carboxy anhydride monomer.
Polymers with different hydrophobic groups were synthesized
via post-polymerization amidation of the parent polymer with
diethylenetriamine and different aliphatic amines. Alkyl amines
(from pentyl to dodecyl amine), cyclohexyl ethyl amine
(CHE), and phenyl ethyl amine were used. The polymers were
labeled with Alexa Fluor 647 to allow for the measuring of the
partition coefficient into 1-octanol and 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) buffer mixtures using
fluorescence spectroscopy. LogP values between −1.9 and
−2.6 were observed. All polymers completely condensed
luciferase coding mRNA at N/P values greater than 2 in 10
mM HEPES buffer. The polymers containing a CHE
substituent with an intermediate value of LogP exhibited
greater luciferase expression in mouse myoblast C2C12 and
neuroblastoma Neuro-2a cells, when compared to all other
polymers. These vectors exhibited an equilibrium of polyplex
stability in the extracellular environment and efficient mRNA
release after cellular uptake.
Although most studies focus on the optimization of the

amount and type of hydrophobic moieties introduced, a recent
study suggests that the topology (i.e., how the hydrophobicity
is distributed along the polymeric chain) can affect how these
polycations are internalized by cells. Perrier et al.648

synthesized copolymers of di-boc-guanidinoethyl acrylamide
with either hydrophilic hydroxyethyl acrylamide or hydro-
phobic N,N-dimethyl acrylamide via RAFT polymerization.
The copolymers were synthesized in statistical, diblock, or
tetrablock topologies. Comparing the statistical copolymer
with the homopolymer of guanidinium ethyl acrylamide, it was
found that introducing hydrophobicity increases the cell
uptake into MDA-MB-231 and Caco2 cells. Regarding the
microstructure, the statistical copolymer was internalized more
than the diblock and tetrablock copolymers. Cellular trafficking
studies revealed that polyplexes based on the statistical
copolymer were internalized mainly via an endocytosis
pathway, while the diblock copolymer was internalized via a
combination of endocytosis and passive membrane crossing.
That study suggests that the diblock topology results in
polyplexes where the guanidinium groups are more compacted
with DNA, thus reducing the overall cellular uptake, due to
reduced interactions with the negative cell membrane but
potentially allowing for a second mechanism of uptake due to
well-defined hydrophobic blocks that can interact with the
membrane.
One limitation of introducing hydrophobic moieties via a

post-polymerization modification or copolymerization with
hydrophobic moieties is the inherent decrease of the charge
density, that is, the number of protonatable, or charged,
repeating units per polymer chain. Although low charge
density is not by itself a disadvantage for the transfection
process,634 synthetic strategies where hydrophobicity can be

untethered from charge density are necessary to establish
structure−property relationships. As a strategy to overcome
this barrier, Khan et al.649 reported the synthesis of amphiphilic
homopolymers in which each repeat unit contains both a
hydrophobic moiety and a cationic group via a polymerization
modification of poly(glycidyl methacrylate). This strategy
afforded a library of homopolymers with a variety of
hydrophobic (e.g., aliphatic and aromatic) and cationic
(primary amine and guanidine) groups. siRNA gene silencing
experiments on HT-29-luc luciferase reporter cells showed that
the polyplexes form with a polymer containing pentyl chains
and amine cations, at a N/P of 4.5, was more efficient (∼80%
luciferase reduction) than all other polymers in the library and
linear (∼25% luciferase reduction) and branched (∼40%
luciferase reductions) PEI controls. This optimum polymer
showed a balance of siRNA binding, release, and low
cytotoxicity, which contributed to its high performance.

3.5.2. Polycationic Micelles from Amphiphilic Block
Copolymers. Water-soluble polymeric micelles have been
widely used in in the field of drug delivery650−652 and have
seen a recent surge in their application for pDNA and
siRNA.653−660 Polycationic micelles, composed of amphiphilic
block copolymers that contain cationic and hydrophobic
blocks,661 are core−shell-type nanoparticles that condense
nucleic acids into complexes termed “micelleplexes”.662 Some
polycationic micelles for gene delivery contain an additional
hydrophilic non-ionic block that is incorporated for enhanced
colloidal stability. Examples of polycationic micelles with
PEI,663 polypeptides,664,665 PDMAEMA,662,666−669 and qua-
ternized PDMAEMA670 shells, and various hydrophobic, core-
forming blocks such as polybutadiene,671 PS, poly(n-butyl
methacrylate) (PnBMA),662,672 and various polyesters such as
poly(ε-caprolactone) (PCL)669 and poly lactic acid (PLA)664

have been explored. Each of these hydrophobic blocks offers
different core properties due to their varying glass transition
temperatures: PS forms stiff and glassy micelle cores, while
poly(n-butyl acrylate) (PnBA) and PnBMA form a rubbery
core at room temperature, which has been linked to differences
in transfection efficiency.673 In gene therapy, micelleplexes
have been studied for the delivery of DNA,663,666,671,674,675

siRNA,654,665,676,677 and miRNA678 and, recently, as vectors
carrying preformed CRISPR/Cas9 ribonucleoproteins.667

The non-ergodic, process-dependent, self-assembly of block
copolymer amphiphiles presents an opportunity to create a
variety of topologies, since micelles with various morphologies,
sizes, and aggregation numbers can be obtained through
processing changes, even when using the same diblock
copolymers.679,680 Self-assembled micelles exist above a
threshold amphiphile concentration termed the critical micelle
concentration. For polymeric amphiphiles these critical
concentrations can be as low as 10−6 to 10−7 M, indicating
that the micelles remain stable during dilution making them
promising candidates for an intravenous administration.660

Each polycationic micelle is formed by hundreds of block
copolymer chains, which, depending on the degree of
polymerization of the cationic block, result in cationic shells
with ∼103 to 104 charged groups per micelle. Polycationic
micelles and their complexes with nucleic acids used for gene
therapy are nanometric (10−100 nm),652 which has been
suggested to increase their internalization efficiency and
binding capacity.681 Polycationic vectors are highly tunable
vectors whose size, critical micelle concentration, and
aggregation number can be tailored by adjusting the block
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copolymer molecular weight, incorporating additional blocks,
introducing hydrophilic moieties either in a statistical or block-
like fashion, or modifying the micelle end groups.668,682−685

Polycationic micelles formed from triblock copolymers
containing a non-ionic hydrophilic blockin addition to a
cationic and a hydrophobic blockhave also been used as
components for micelleplex formulations. As discussed in
Section 3.4 the introduction of a hydrophilic block reduces
toxicity, increases colloidal stability, and increases the
circulation time of polyplex formulations.674,682 These triblock
copolymers can be synthesized with different blocking orders
(i.e., the spatial organization of the three blocks) that influence
the corona properties and, therefore, performance as gene
delivery vehicles. Triblock copolymers synthesized with
hydrophilic-cationic-hydrophobic,665−667,682 hydrophilic-hy-
drophobic-cationic,670,675 and cationic-hydrophilic-hydropho-
bic686 blocking orders have been evaluated as nucleic acid
delivery vehicles. For instance, Bryers and coworkers
synthesized a series of triblock copolymers composed of
cationic PDMAEMA (D), hydrophilic poly(ethylene glycol
methacrylate) (PEGMA, P), and hydrophobic P(DEAEMA-co-
nBMA) (E) blocks with different block lengths and blocking
orders: D-P-E, P-E-D, and P-D-E. The performance of micelles
formed from these triblock copolymers as mRNA vectors for
the transfection of RAW 264.7 macrophages and DC2.4
dendritic cells was compared.686 All polymers formed
polycationic micelles with hydrodynamic diameters between
20 and 30 nm. mRNA micelleplexes formed with the DPE-
triblock copolymers exhibit a better transfection efficiency
(68% GFP+ cells) than the copolymers with the other two
blocking orders (<2% for both PDE and PED), Lipofectamine
controls (30%), and a diblock copolymer without a PEGMA
block (8% for DE micelleplexes) in the macrophage model. A
similar trend was also seen with these systems in DC2.4
dendritic cells (Figure 28A).686

Amphiphilic polymeric micelles are used as drug delivery
vehicles due to their ability to solubilize hydrophobic drugs in
their cores.650,651 This property has also been extrapolated with

micelleplexes, where the simultaneous delivery of therapeutic
nucleic acids (condensed around the micelle cationic shells)
and small-molecule cancer drugs (encapsulated in the micelle
core) can display synergistic effects in cancer ther-
apy.199,654,656,663,669,675,687,688 Figueiras and coworkers recently
reviewed the opportunities and challenges for the use of
micelleplexes in these types of therapies.659

Morphological studies of pDNA-based micelleplexes have
shown that these complexes typically contain more than one
micelle per complex and that their size and composition are
dictated by structural parameters on the nucleic acids and the
cationic block copolymers. Several studies have shown the
effect of the length of pDNA in the morphology of the
micelleplexes.670,685 Complexes containing long pDNA
(∼2000 bp or more) show a beads-on-a-string structure with
DNA “threads” wrapped around the micelles via a beads-on-a-
string structure resembling chromatin (Figure 28C). Com-
plexes formed with shorter DNAs form spheroidal structures,
in which more than one micelle per complex is observed
(Figure 28D). In terms of the block copolymer structure,
Reineke and coworkers explored the influence of the PEG
block length on the morphology and composition of
micelleplexes formed between a 2442 bp pDNA and PEG-b-
PDMAEMA-b-PnBMA triblock copolymers.682 Triblock co-
polymers with larger PEG blocks (Mn = 10 kDa) formed
micelleplexes that, on average, contain fewer micelles and DNA
molecules per complex, when compared with micelleplexes
formed with triblock copolymers with shorter PEG blocks (Mn
= 2 and 5 kDa) or with PDMAEMA-b-PnBMA diblock
copolymers where the PEG block was absent.
A distinction should be made between the micelleplexes

discussed in this section and the polyion complex micelles
introduced in Section 3.1.1. PIC micelles assemble during the
mixing of double-hydrophilic polycationic block copolymers
and nucleic acids, while micelleplexes are formed using pre-
assembled polycationic micelles (Figure 29A). Several studies
have systematically contrasted the efficiency of micelleplexes,
polyion micelle complexes, and polyplexes.662,666,676 Won and

Figure 28. (A) Triblock copolymer blocking order (i.e., DPE, PED, and PDE) and length (DPE1-3) were optimized for the delivery of mRNA to
RAW 264.7 macrophages (LF = Lipofectamine control). Reprinted with permission from ref 686. Copyright 2012 Elsevier. (B) Cryo-TEM images
of micelles from QPDMAEMA-b-PLMA-b-POEGMA triblock copolymers and their complexes with (C) long DNA (2000 bp) and (D) short
DNAs (113 bp). Reprinted with permission from ref 670. Copyright 2020 American Chemical Society.
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coworkers contrasted the efficiency of a PDMAEMA
homopolymer (polyplexes), a double-hydrophilic PEG-b-
PDMAEMA diblock copolymer (PIC micelles), and an
amphiphilic PEG-b-PnBA-b-PDMAEMA triblock copolymer
(micelleplexes) (Figure 29A) as either a DNA662 or siRNA676

delivery vehicle for the in vivo transfection of HeLa cells. DNA
complexes with all polymeric systems exhibited a low
transfection performance (<1% GFP positive cells), with the
micelleplex formulations having a slightly lower performance
than the other two systems. For transfections with
micelleplexes containing siRNA, the micelleplexes outper-
formed the other two systems (23% of GAPDH mRNA
silencing vs 14% for the polyplexes and 8% for PIC micelles),
although their efficiency was low compared to control
Lipofectamine formulations (74% GAPDH mRNA silenc-
ing).676 A recent study from Reineke and coworkers compared
the transfection efficiency of HeLa and HEK293T cells with
pDNA using either polyplexes (based on either a PDMAEMA
homopolymer or a PEG-b-PDMAEMA diblock copolymer) or
micelleplexes (based on either a PDMAEMA-b-PnBMA
diblock copolymer or PEG-b-PDMAEMA-b-PnBMA triblock
copolymers).666 Both micelleplex formulations were shown to

outperform the analogous polyplexes (more than fourfold
higher % GFP+ cells) (Figure 29B). Micelleplexes displayed
higher levels of cell internalization when compared to
polyplexes. Additionally, circular dichroism experiments
showed that, in micelleplexes, DNA wraps around micelles in
a beads-on-a string morphology that preserves the helical DNA
native B form, while in tightly bound polyplexes, this structure
is distorted, which could contribute to higher levels of GFP
expression from the micellplex formulations.
Recently Reineke and coworkers reported micelleplex

formulations based on similar micelles (i.e., PDMAEMA-b-
PnBMA and PEG-b-PDMAEMA-b-PnBmA) for the gene
editing of HEK293T cells with Cas9/guide RNA ribonucleo-
proteins (RNPs).667 Because of their negative charge, granted
by the guide RNA, RNPs could bind electrostatically to the
polycationic micelles to form micelleplexes. Interestingly, the
micelleplex formation process was greatly affected by the
media in which these complexes were formed. In PBS, small
(∼30 nm) micelleplexes (containing 14 RNPs per micelleplex)
were obtained, while in water, larger (130−160 nm) multi-
micelleplex particles were obtained with both diblock and
triblock copolymer micelles at N/P ratios of 2.5 and 5.

Figure 29. (A) Schematic representation of the formation process of polyplexes, PEGylated polyplexes (PIC micelles), and micelleplexes. Adapted
from ref 676. (B) Micelleplexes (DB and ODB) displayed higher pDNA efficiency (% GFP+ cells) than polyplexes (D and OD) and jetPEI®
controls for the transfection of HEK293 cells. Reprinted with permission from ref 666. Copyright 2019 American Chemical Society.
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Micelleplexes formulated in water exhibited a higher gene
editing efficiency (40% NHEJ editing) than the PBS
formulations (∼5%) and a Lipofectamine 2000 control
(∼22%), which is believed to be due to a faster sedimentation
of these larger particles onto the cells.
In summary, pre-assembled polycationic micelles possessing

a hydrophobic core are effective vectors for the delivery of
nucleic acids, whose use has focused mainly on two areas: (1)
the codelivery of therapeutic nucleic acids and small-molecule
drugs for cancer gene therapy659 and (2) the precise
characterization of the micelleplex structures to correlate the
structure to gene delivery performance often in comparison to
polyplexes. The development of micelleplex formulations for
gene therapy will continue to exploit concepts from the drug
delivery field such as the use of stimuli-responsive and
targeting moieties.689 Ultimately polycationic micelles with
highly uniform and reproduceable formulations offer a tunable
motif as gene carriers with promising and untapped potential,
for instance, in the delivery of new cargos for gene editing.667

3.6. Incorporating Stimuli-Responsive Properties

Polyplex formulations experience several environmental
changes as they travel through the biological milieu, be it
cell culture media or circulatory systems within living
organisms. There is a growing recognition that polymers
must be engineered to sense changes within the physiological
environment and to respond to these changes by rapidly
switching between divergent sets of properties. Responsive
polyplexes have been designed to respond to a variety of
exogenous triggers such as temperature,690−693 light,694,695 or
ultrasound696,697 and endogenous signals such as pH,698−701

reactive oxygen species,702−707 enzymatic activity,559,708,709 or
changes in redox environments.710−712 This section is not
intended to serve as an exhaustive review of stimuli-responsive
polyplexes, and we redirect the readers to more focused
reviews.713−715 Here, we aim to briefly discuss chemical design
concepts relevant to pH-responsive, photo-responsive, and
redox-responsive polyplexes, with examples selected to reflect
our emphasis on chemical synthesis and architectural
modifications.
3.6.1. pH-Responsive Polyplexes. Using macromole-

cules that are pH-responsive is an excellent strategy for
designing gene delivery systems to selectively respond to
different biological environments. Different organelles and cell
types possess a range of pH values, such as standard
physiological (7.0−7.4716), cytoplasmic (7.4717), and endo-
somal (4.5−6.5718). These values can vary significantly
depending on the cell type and over the course of an
organelle’s or cell’s life.719 Moreover, tissues can vary in their
extracellular pH values. Tumor tissue has a pH of 6.15−7.4,716
while gastric pH is 1.7.720 Systems responsive to changes in pH
within these relevant ranges may overcome biological barriers
inhibiting effective transgene expression. Typical strategies to
create pH responsiveness include (1) incorporation of
monomers or functional polymeric backbones whose proto-
nation state is based on pH, (2) cleavable bonds that are
common throughout the synthetic literature with some
examples highlighted in Section 4.6, including Schiff bases
and acetal/ketals, or (3) noncovalent changes in macro-
molecular structures such as the assembly or disassembly of α-
helices or micelles. All of these strategies can be employed to
design gene delivery systems that respond rapidly to changes in
intracellular pH to effectively deliver nucleic acids. Many

examples are described below, but for more comprehensive
reviews on pH-responsive nanocarriers for gene delivery we
redirect readers to Cho et al.721 and Park et al.271 In this
section, we will discuss pKa measurement techniques; then we
will focus on pH-responsive strategies to promote endosomal
escape and tumor targeting, which represent two key
applications of pH-responsive delivery in the literature.
If polymer chemists wish to engineer polymers with pKa

values targeting physiological or endosomal pH, then accurate
pKa measurements of the gene delivery vehicles are essential to
determine the protonation state of these polymers in varying
cellular environments. The degree of protonation (α) can be
determined from the pKa of an acid and pH of its environment
using the Henderson-Hasselbalch equation, pKa = pH + log[α/
(1 − α)].722−724 The pKa of a molecule can be determined
through a variety of methods with the most common including
acid−base titration and nuclear magnetic resonance (NMR)
spectroscopy.724,725 In acid−base titration, a base is slowly
added to a solution of the molecule of interest while
monitoring the pH value. Subsequently, the pKa can be
determined using the Henderson-Hasselbalch equation. For
pKa determination using NMR, the change in chemical shifts of
nuclei close to the protonation site of the molecule is measured
across a range of pH values, and the chemical shifts are
compared to the shifts of the fully deprotonated and
protonated molecules to determine the pKa.

725 Titration is
often the preferred method due to the simplicity and the ability
to do relatively quick pH measurements compared to NMR
experiments. Other parameters that can affect pKa include
solvent, solution ionic strength, temperature, and whether the
protonatable group is in the form of a monomer or
polymer.724,726 For example, Reineke et al. found that pKa
decreased when a monomer was polymerized, which is due to
the unfavorable interactions of charged groups in close
proximity to each other.289 This work highlighted the
importance of pKa measurements that reflect the conditions
used in its application. For a more comprehensive perspective
on these experiments and other methods for pKa determi-
nation, Reijenga and coworkers have published a review on this
topic.724 In addition to the delivery vehicle pKa, the
intracellular pH is another important factor in gene delivery
that can be measured. Intracellular pH can be measured in
three ways as outlined in the review by Loiselle et al., including
(1) microelectrodes that measure the proton concentration via
the electric potential across the probe, (2) NMR measure-
ments that analyze intracellular molecules via pH-dependent
NMR shifts, and (3) fluorescence measurements of pH-
sensitive fluorophores.727 The use of pH-sensitive fluorophores
is especially useful for understanding intracellular environ-
ments and has been widely used in the gene delivery field.
Burgess et al. have an excellent review comparing the
fluorescent dyes that have been used for intracellular pH
measurement.728

As previously mentioned in Section 2.4, another widespread
strategy for designing polymers to overcome the endosomal
escape barrier is to exploit the pH differential between
intracellular and endosomal pH or promote interactions
between polycations and endosome membranes that result in
increased membrane permeability. The former method takes
advantage of pH-dependent protonation changes in the
polymers that cause osmotic pressure changes and ruptures
these vesicles. However, at a physiological pH, the delivery
vehicle is protonated to a lower degree, minimizing the cellular
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membrane disruption and toxicity. For example, Kataoka et al.
found that, at physiological pH, poly{N-[N-(2-aminoethyl)-2-
aminoethyl]aspartamide} (P[Asp(DET)]) was monoproto-
nated and disrupted the membrane 90% less than at the
endosomal pH of 5.5 where it is diprotonated. It was predicted
that this membrane disruption, which occurred only under
endosomal conditions, led to high transfection efficacy and low
toxicity when compared to poly{N-[N-(3-aminopropyl)-3-
aminopropyl]aspartamide} (PAsp-(DPT)), a fully protonated
derivative control, and branched polyethylenimine (BPEI) (25
kDa) (Figure 30).723 This strategy has been used extensively
with a wide variety of protonatable delivery systems.698,729−731

Another strategy for promoting endosomal escape includes
acid-catalyzed degradable polymers that will break down under
endosomal conditions. This breakdown is hypothesized to
promote endosomal escape, since lower molecular weight
polymers bind less strongly to negatively charged nucleic
acids265,733 and tend to be less cytotoxic.265,462,465 Yin et al.
crosslinked low-molecular weight PEI with an acid-sensitive
ketal moiety, which would degrade under a reduced endosomal
pH.734 While the crosslinked polymer encapsulated DNA
effectively, the degradation of the crosslinks in the endosome
allowed for release of the DNA.734 Many papers have also used
this strategy where endosomal conditions degrade the delivery

vehicle to promote nucleic acid release.735,736 In addition,
nanoparticles that undergo noncovalent degradation under
endosomal conditions can also be used to promote endosomal
escape. Bae et al. developed a pH-sensitive diblock that
surrounds a PEI/DNA nanoparticle at a physiological pH due
to the electrostatic binding between the anionic diblock and
cationic PEI/DNA nanoparticle. However, this pH-sensitive
diblock detaches from the PEI/DNA nanoparticle once
acidified and is neutralized under endosomal conditions
allowing the cationic PEI to interact with the membrane for
a charge-mediated release.737

Responsive peptides, lipids, or micelles can change their
macromolecular structure and conformation in a pH-depend-
ent fashion allowing them to interact with endosomal
membranes in acidic environments. Pun et al. observed that
a virus-inspired polymer for endosomal release (VIPER),
improved the GFP expression in HeLa and KB cervical
carcinoma cells compared to Lipofectamine and bPEI (Figure
31).732 Under physiological conditions, the VIPER self-
assembled into micelles but dissociated under acidic conditions
such as within the endosome. The dissociation also revealed
lytic peptides, which could promote delivery to the cytosol.
This VIPER system, however, minimally transfected Jurkat and
primary T-cells.738 Pun et al. predicted that VIPER had a poor

Figure 30. Example of the incorporation of monomers or functional polymeric backbones whose protonation state is based on pH. In this example
Asp(DET) is monoprotonated in extracellular conditions but is diprotonated under acidic endosomal conditions causing membrane disruption
under these acidic conditions. Reprinted with permission from ref 723. Copyright 2008 American Chemical Society.

Figure 31. Example of noncovalent changes in macromolecular structures. The micelle dissociates under acidic endosomal conditions revealing
melittin, a lytic protein that promotes endosomal release. Reprinted with permission from ref 732. Copyright 2016 John Wiley and Sons.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

AN

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig31&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


transfection efficiency in T-cells because their endosomes are
less acidic than those of HeLa, minimizing micelle dissociation
and therefore delivery.719 Furthermore, pH-responsive fuso-
genic peptides, typically based on the HA-2 subunit of the
influenza virus, are peptides that have the ability to destabilize
membranes only at endosomal pH and have been used
extensively in drug and gene delivery platforms.739−741 Hatefi
et al. compared some of these pH-responsive peptides for their
different properties related to gene delivery.740 They found
that GALA, a peptide comprised of 30 amino acid residues,
displayed the highest endosomal membrane disruption and the
least cell toxicity.740 The Szoka lab developed GALA so that, at
neutral pH, GALA is water-soluble and a random coil.742

Because of the glutamic acid residues, under endosomal
conditions GALA undergoes a transformation self-assembling
into an α-helix with hydrophobic and hydrophilic domains.742

This α-helix interacts with membranes, destabilizing the
membrane, often leading to endosomal escape.742 Many
other examples of GALA being applied to drug and gene
delivery systems have been reviewed by Li.743 Furthermore, we
draw attention to recent examples of pH-responsive macro-
molecules used in gene delivery to improve endosomal escape
for a variety of nucleic acid delivery platforms.744−748

The dysregulated extracellular environment of a tumor
results in an acidic pH and can be used for cancer-targeting
gene delivery.750 Typically, either pH-sensitive protonation or
acid-cleavable bonds have been used to effectively target tumor
cells by inducing charge-mediated cell membrane disruption
only in the acidic tumor cell environment and not under
normal physiological conditions. This approach requires
delivery vehicles that are sensitive to minute changes between
the physiological pH and the intratumoral pH. For example,
many of these cleavable bonds are amides that have different
neighboring groups to modify the pH at which cleavage is
favorable. Guo et al. developed pH-responsive polymer
coatings composed of PEI coupled to 1,2-cyclohexanedicar-
boxylic via amide bonds.751 These pH-responsive polymers,
which were anionic at physiological pH, were used to coat
cationic PEI and DNA nanoparticles to minimize cytotoxicity
and interactions with healthy cells at physiological pH. Under
hypoxic tumor conditions, the polymer would neutralize and
detach from the nanoparticles, leaving a cationic nanoparticle,
which would then be internalized by tumor cells. Many other
groups have also taken advantage of moieties whose charge
changes between physiological and extracellular pH for
targeted gene delivery with some cited here.720,752 Li et al.
took advantage of a pH-responsive cleavable bond to
effectively deliver pDNA to tumor cells. They used an acid-
cleavable block polymer of PEG and PAEMA modified with
2,3-dimethylmaleic anhydride (PPD, Figure 32) that contains
an amide bond and carboxylic acid groups, which are
negatively charged at physiological pH.749 Under the acidic
conditions within a tumor, the authors claim that the amide is
cleaved, shedding the carboxylic acid moiety and leaving a
positively charged amine. This acid-cleavable polymer, PPD,
was coated around their CD-OEI/pDNA polyplex to
effectively deliver pDNA. The negatively charged nanoparticle
would be able to circumvent the high blood clearance and
toxicity of positively charged nanoparticles. After the acid-
induced cleavage, the cationic nature of the nanoparticle would
enhance charge-mediated cell uptake and endosomal escape
for effective and targeted gene delivery (Figure 32). Although
this pH-sensitive cleavable bond in PPD has been used

extensively for drug delivery to cancer cells,653,753−755 there is a
great interest in applying this method to gene delivery to either
target tumors or to work around the PEGylation dilemma.561

Similarly, Zhang et al. developed pH-responsive nanoparticles
coated with PEI for targeted siRNA delivery to C6 glioma
cells.756 Citraconic anhydride was conjugated to the primary
amine groups of PEI, which is acid-cleavable under tumor
extracellular pH, causing the charge to shift from neutral to
positive. They observed almost no gene silencing at biological
pH but greater than 40% gene silencing at the tumor pH (6.2)
when dosed with 4 or 8 μg/well of iron in their nanoparticles
coated with this pH-responsive PEI.
As we have seen so far, pH-responsive polymers have had a

significant impact on both in vitro and in vivo gene delivery
thanks to the incorporation of diverse ionizable chemical
moieties such as imidazoles, tertiary amines, etc. Apart from
spatiotemporal control over the payload release kinetics, these
polymers can also be engineered to “sense” the pH
physiological environments, thereby serving as a diagnostic
aid. To realize the theranostic potential of pH-sensitive
polymers, we must work on improving their sensitivity to
rapidly detect and respond to minute changes. Finally, most
chemists have not considered the “nanobuffering-controlled
local pH” wherein polycations display high buffering capacities
at close proximities and exert control over the local pH,
independently of the global or bulk solution pH.757 This
phenomenon is yet to be exploited in a polymeric gene delivery
to improve the sensitivity of pH-responsive vehicles but is
expected to improve polyplex delivery performance.758

3.6.2. Photoresponsive Polyplexes. Polymers that are
responsive to light, typically ultraviolet, near-infrared, or visible
light, have been applied for spatially and temporally-targeted
delivery. Optical penetration of target tissues is not a hindrance
for in vitro applications but presents obstacles during
phototherapy, since the light intensity is diminished within a
depth of 3.5 mm, depending on the wavelength.759 Ultraviolet
light is typically the most effective in transforming polymer
vehicles; however, ultraviolet treatment has a low penetration
depth and poses mutagenic concerns.760 Longer-wavelength,

Figure 32. Example of pH-cleavable bonds. Amide bond hydrolysis
under acidic extracellular tumor conditions causes the nanoparticle to
shift from negatively to positively charged, enhancing tumor cell
specificity. Reprinted with permission from ref 749. Copyright 2020
American Chemical Society.
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lower-energy light like near-infrared and visible light have
shown the ability to penetrate human tissue at larger depths;
however, they are typically less efficient in triggering responsive
motifs. Herein, we describe some examples demonstrating
improved delivery of nucleic acids by exploiting the triggered
release of payloads in response to ultraviolet, near-infrared, and
visible light.
Currently, the most common photolabile linker used for

gene delivery is o-nitrobenzene (Figure 33A). The research
groups of Yin and Chen were able to incorporate o-
nitrobenzene within the backbone of poly(β-amino esters) a
system that can be degraded by stimulation with UV light.
Both studies showed that both the transfection efficiency and
cell viability were higher than their non-degradable control
counterparts in mammalian cell types due to the triggered
breakdown of the polymer.763,764 Haag et al. constructed a
hyperbranched polyglycerol decorated with an oligoamine
pendant using o-nitrobenzene linkers. With a 350 nm light
induction, they observed a controlled released of DNA (via
cleavage of the oligoamine from the polymer backbone).765 In
an in vivo study, Mei et al. demonstrated tumor-targeted
delivery in mice via tissue-penetrating near-infrared light.
Nanoparticles were decorated with cell-penetrating peptides
linked with 4,5-dimethoxy-2-nitrobenzyl groups, which were
able to show a tumor-selective accumulation, internalization,
and delivery of siRNA by near-infrared light.766 Epps, Sullivan,
and coworkers have shown the development of photo-
responsive block polymers for gene delivery by an incorpo-
ration of o-nitrobenzene on each pendent amine. They are able
to form PIC micelles after the complexation of mPEG-b-
poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) poly-
mers with nucleic acid cargo.767 The PEG serves as a stealth
corona, while the cationic core contains pendant degradable
linkages. Further information on the application of these
photo-responsive block copolymers can be found in the
focused review by Sullivan et al.768 The use of o-nitrobenzene
as a photostimulated degradable backbone or pendent linker
cleavage site has shown the benefit of improving release
capabilities of cationic polymers in vitro and in vivo.

Visible light provides the inherent advantage of penetrating
human tissue while causing less damage than ultraviolet
radiation. Hovig et al. co-delivered cationic β-cyclodextrin-
containing polymers with photosensitizer additives, which
initiate photochemical endosomal and lysosomal membrane
damage, to enhance the release and delivery of siRNA into
osteosarcoma and melanoma cell lines. They found an 80%
increase in gene silencing after exposure to 420 nm visible
light, attributing siRNA release to endosomal/lysosomal
escape.769 Liu et al. was able to show a similar result by
using photosensitizers to increase endosomal/lysosomal escape
and DNA unpacking using OEI-based polymers conjugated
with an aminoacrylate linker; this system was readily cleaved
within the polymer backbone using visible light initiation
(Figure 33B).762 With the use of jetPRIME® as the polymeric
delivery vector, Takishima et al. was able to show that a
preliminary exposure of cells to blue light inhibited the delivery
of pDNA complexes, while unexposed areas still resulted in an
uptake in HeLa, HEK293, and HepG2 cell lines. They
hypothesized that this technique could facilitate spatioselective
delivery by exposing surrounding areas with blue light to
destabilize endosomal membranes while leaving the targeted
area unexposed.770 Another technique used a novel silicone-
based platform that promoted an increase in surface potential
caused by visible light illumination, thus promoting a DNA
release and cellular uptake.771 Although photo-triggered release
has been well-documented in the field of drug delivery, this
technique is beginning to be implemented for applications in
gene therapy with polymers that respond either directly or
indirectly with light.760

3.6.3. Redox-Responsive Polyplexes. Redox-responsive
or “bioreducible” polymers take advantage of the redox
gradient existing between the intracellular and extracellular
environment.772 The redox environment is regulated by
glutathione, which is a key player in various physiological
processes such as shielding against oxidative stress, trans-
porting amino acids, and synthesizing biomacromolecules such
as DNA and proteins. Glutathione can exist either in its
oxidized disulfide form or its reduced thiol form (GSH), with
the latter being more dominant within the cytosol.773 While

Figure 33. (A) Photoreaction mechanism of o-nitrobenzene. Adapted from ref 761. Copyright 2018 John Wiley and Sons. (B) Photoinduced
disassembly of polyplex showing DNA release. Dye exclusion assay showing increased release as an increase in irradiation time. Reprinted with
permission from ref 762. Copyright 2015 John Wiley and Sons.
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GSH exists in the micromolar concentration range outside the
cytosol (Figure 34), cytosolic concentrations range between 1
and 11 mM.773 This GSH concentration gradient ensures that
nucleic acid payloads are strongly bound to polyplexes within
the oxidizing extracellular environment.773 Interestingly, GSH
concentration fluctuates widely within various cellular
organelles, with the lysosomes and the endoplasmic reticulum
offering more oxidative environments and the nucleus offering
a more reducing environment than the cytosol. Disulfide
chemistry is routinely used to impart bioreducible properties to
polymeric vectors. Specifically, when thiol groups within GSH
encounter disulfides within polyplexes, thiol−disulfide ex-
change reactions occur, resulting in new pairs of disulfide and
thiol molecules (Figure 34).774,775 Research on bioreducible
polyplexes has disproportionately focused on PAMAs, PEI,
PLL, and PDMAEMA, and expanding the scope of disulfide
chemistry to other cationic polymers may prove to be
interesting.
A thiol−disulfide exchange is inherently biomimetic, since

these reactions are critical in protein folding, enzymatic
activity, and metabolic processes. There are several advantages
in employing disulfide chemistry: (1) it is orthogonal to other
bioconjugation schemes, allowing for the incorporation of
several other chemical moieties (targeting ligands, pH-
responsiveness, PEG, etc.), resulting in multifunctional dual-
responsive polyplexes. (2) Covalent bonds are formed in a
reversible manner under physiological conditions. Since the
reaction kinetics are swift (half-life of 2 h in the cytosol), the
polyplex disassembly and payload unpackaging proceed
rapidly. (3) Since GSH is a weak acid, free thiols are
unavailable even under slightly acidic conditions, effectively
inhibiting the reaction in non-cytosolic environments. Apart
from being highly pH-specific, the reaction rate can be
decelerated by using sterically hindered disulfides776 and
accelerated by using highly charged disulfides. Notwithstand-

ing the numerous advantages of disulfide chemistry, several
groups have explored the use of diselenide bonds777 instead of
disulfide bonds since the former are more labile and can be
cleaved more readily. A recent paper778 explored the use of
zinc(II) coordinative modules to transform low molecular
weight PEI from a weakly binding inefficient vehicle into a
bioreducible vector that could transfect challenging cell types
efficiently.
We note that disulfide chemistry has become almost

ubiquitous in recently published reports on polymeric gene
delivery and redirect readers to some excellent in-depth
reviews on synthetic methodologies.773,775,779 We must caution
readers that, although disulfide exchange is a universally
deployed synthetic strategy, mechanistic studies on the exact
role of bioreducible functionalities are rare.780 Oupicky and
coworkers have addressed this knowledge gap by probing the
mechanisms through which bioreducible polyplexes outper-
form non-bioreducible structures. In an interesting report, they
discovered that variations in GSH concentration can modulate
the efficacy of reducible polyplexes. Importantly, they observed
payload-specific effects, with improved transfection of mRNA
polyplexes when bioreducible functionalities are incorporated,
but no clear benefit for pDNA, oligonucleotides, and siRNA
payloads.781 In a similar study, they varied the degree of
disulfide incorporation within PAMAs and noted that,
although disulfide-rich polymers promoted DNA transfection
levels by enhancing the membrane uptake, there was no
difference in the experimentally determined intracellular DNA
release rates between reducible and non-reducible formula-
tions.782 Oupicky and Mao employed atomic force microscopy
to capture the depolymerization process through which DNA
payloads were released by bioreducible polyamidoamines.783

Wagner and coworkers synthesized sequence-controlled lipo-
oligomers with a controlled placement of redox-responsive
functionalities and showed that reducible polyplexes showed

Figure 34. While bioreducible polyplexes are stable in the extracellular environment where glutathione concentration is low (2.8 μM), they
undergo rapid degradation within the reducing environment of the cytosol through thiol−disulfide exchanges, which results in nucleic acid
unpackaging. Reprinted with permission from ref 775. Copyright 2012 American Chemical Society.
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more efficient gene silencing than their non-reducing counter-
parts.774 Wagner’s group also developed a PLL−PEG polymer
that incorporated an endosmolytic peptide and covalently
conjugated this polymer to siRNA via disulfide bonds, ensuring
that a payload disassembly occurred only when both heparin
and glutathione were present.784 Oupicky and coworkers also
developed similar conjugated polyplexes, wherein thiol-
functionalized siRNA and a polymeric inhibitor (Plerixafor)
of the chemokine receptor type 4 were coupled.785 Narain and
coworkers prepared galactose-based hyperbranched polymers
by incorporating a disulfide-based monomer and observed that
bioreducible polyplexes achieved silencing of the epidermal
growth factor receptor that was twice as high as that of
Lipofectamine.786 The combination of fluorination with
bioreducibility has also proven to be an effective strategy for
imparting serum stability as well as improving cytosolic
delivery.787−789 In these studies, cationic polymers were
conjugated to fluorocarbon chains, facilitating the assembly
of micelles with a fluorinated core and a polycationic corona.
Subsequent DNA condensation was accompanied by increased
size and extremely high DNA binding affinities even at N/P
ratios as low as 1.788 In addition to a lowered toxicity, these
micelles were able to achieve almost 90% gene silencing in vivo
due to the incorporation of bioreducible linkages, in contrast to
the 30% silencing achieved by non-fluorinated and non-
reducible equivalents.787 Reversible shielding and PEG
shedding can be accomplished by engineering block copoly-
mers incorporating a PEG block as well as cationic polymers
linked through disulfide bonds.790,791 While both stably and
reversibly shielded polyplexes exhibited more than 80% cell

viability and were demonstrated to be colloidally stable in ionic
strengths as high as 150 mM, reversibly shielded polyplexes
exhibited 28 times higher pDNA transfection efficacy as
compared to stably shielded controls. Collectively, this work
shows how glutathione-triggered degradation has been
combined with other design elements such as hydrophobicity
and PEGylation to improve polyplex properties. Future work
should focus on a systematic variation of not only the degree of
incorporation of disulfide bonds but also the spatial
organization of bioreducible functionalities within the polymer
in order to probe the relationship between DNA release rates
and transgene expression.
In summary, we have briefly outlined some synthetic

pathways for introducing pH-responsive, light-responsive, and
redox-responsive functionalities within polyplexes. Inspired by
examples from drug delivery, many researchers have creatively
combined multiple chemical functionalities to generate dual-/
multi-stimuli-responsive polyplexes.792,793 These design ap-
proaches exploit the coexistence of multiple triggers within the
physiological environment (e.g., pH and redox gradients are
both present within tumors) to further improve delivery
performance and circumvent biological barriers. While we do
not discuss dual-/multi-stimuli-responsive polyplexes here, we
redirect the reader to some recent examples in the gene
delivery literature.729,794−803 Interestingly, many of these
studies apply dual-/multi-stimuli-responsive polyplexes to co-
deliver dual payloads consisting of drugs and nucleic acids,
especially for treating drug-resistant cancers. We believe that
these multifunctional design approaches will be more widely
applied in the future, further driving the evolution of

Figure 35. Scheme of main polymer functionalization techniques. Polymers can be functionalized through reactive monomers, end-group
modifications, or cross-linking.
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polyplexes from static unresponsive materials to intelligent,
versatile, and adaptive actuators.

4. ENGINEERING MULTIFUNCTIONAL POLYPLEXES
THROUGH CHEMICAL MODIFICATIONS

4.1. Synthetic Strategies

The previous examples so far have highlighted polymer
structures that inherently possess functionalities to bind,
encapsulate, and deliver nucleic acids. However, there have
also been many recent synthetic strategies wherein these
polymers have been chemically modified to improve their gene
delivery function and circumvent the obstacles that plague
many nonviral delivery vehicles such as cell targeting, improved
colloidal stability, immune system circumvention, and efficient
cargo release.46,804−807 Mauri27 and Blasco804 succinctly
discuss the methods in which polymers can be functionalized,
which include: ester activation to form amides (e.g., through
N-hydroxysuccinimide or pentafluorophenyl ester activation),
click chemistry (copper-catalyzed or copper-free strain-
promoted azide−alkyne cycloadditions, CuAAC/SPAAC),
thiol chemistry (disulfide exchanges or thiol−ene/-yne),
Diels−Alder chemistry, pH-responsive linkages (e.g., imines,
oximes, hydrazones, acetals), ring-opening reactions (epoxides,
aziridines, azlactones), multicomponent reactions, and host−
guest interactions (Figure 35). Each of these chemical
modifications serves a specific purpose such as increasing the
stability of the polyplexes, attachment of targeting groups for
improved cellular recognition, or environmentally responsive
elements (e.g., pH, redox, thermal) to improve endosomal
escape or unpackaging of the cargo. Additionally, these
methods of engineering multifunctional polymers can involve
post-polymerization functionalization via reactive polymer
intermediates, telechelic polymers via chain transfer agents or
initiators, incorporation of noncovalent affinity interactions, or
host−guest chemistry. Reactive polymer intermediates are
either derived from natural sources or synthesized synthetically
via free radical polymerization, ATRP, RAFT polymerization,
or peptide chemistry.807 Each of these methods and their
current state of the art for polymer functionalization are
discussed below.
4.2. Ester Activation

Ester activation is a nearly ubiquitous strategy that is used to
functionalize polymers and nanogels for a panoply of uses
including gene delivery.27,805,808 This strategy has gained
momentum in the polymer community, since not only are
activated esters stable toward radical polymerization, activated
(meth)acrylates are also a facile route to post-polymerization
functionalized poly(meth)acrylates and can give rise to a vast
library of polymers with diverse side chains not available with
conventional (meth)acrylate monomers.809 Early applications
of post-polymerization modifications for therapeutic gene
delivery systems incorporate functional monomers via
activated esters involved poly(N-methacryloxysuccinimide).
First synthesized by Ferruti and coworkers in 1972,810 these
reactive electrophilic species enable a facile nucleophilic
substitution with primary or secondary acyclo- or cyclo-
aliphatic amines, generating a series of chemically diverse
derivatives capable of binding DNA for gene delivery. Early
advancements in this field have also been reported by the
Muller group, who synthesized poly(N-methacryloxysuccini-
mide methacrylate) (PNHSMA) and circumvented the
autopolymerization propensity of these monomers. They

subsequently successfully conjugated the anticancer drug
doxorubicin to the pendant side chains.811 Since then, Wong
and coworkers have synthesized a library of functional
polymers from PNHSMA that vary in their pendant groups
(both cationic and hydrophobic) and molecular weight owing
to the applicability of this chemistry.812,813 This library enabled
a rapid optimization of polymer characteristics for DNA
binding and cytotoxicity. As such, these polymers were
subsequently evaluated for gene delivery efficacy. They found
the imidazole-conjugated species showed the highest levels of
transfection efficiency and had a minimal cytotoxicological
activity. Alternatively, the Cheng lab has used the idea of an
activated ester and sulfonate conjugation to synthesize
fluorinated poly(propylenimine) (PPI) dendrimers, which
showed an extremely high transfection efficacy (>90%) to
both HeLa and HEK293 cells at N/P ratios as low as 1.5.416,814

Other examples of this specific functionalization strategy
include functionalizing PEI and PLL with targeting moieties,45

chitosan for cell targeting,815−818 endosomal escape,819 and
polyplex stabilization.820−822

Alternatively, pentafluorophenyl (PFP) esters have become
the other common method of activating esters for functionaliz-
ing polymers. First introduced in 1973,823 PFP esters did not
gain much traction as a tool for polymer functionalization until
2005, when the Theáto group synthesized a PFP-modified
poly(meth)acrylate.824 A distinct advantage of using these
activated esters was exemplified by Klok and coworkers, where
they show a functionalization of linear pentafluorophenyl
acrylate (PFPA) polymers with a series of cationic amines/
ammonium salts, amino acids, sulfonates, and ethylene glycol
proceeded smoothly and were thus able to generate a library of
polymers with identical degrees of polymerization yet
structurally diverse.825 This library was shown to lack a
substantial toxicity towards EaHy 926 human endothelial cells
owing to the utility of this post-polymerization modification.
This strategy has also been adopted by other polymer labs to
rapidly generate polymer libraries.826 A similar concept was
done by Duong and coworkers, wherein they synthesized
micelles that contained a PFPA block, which was used to
crosslink the polymers with a diamine, and conjugated with a
fluorescein isothiocyanate (FITC) labeling block via disulfide
linkages that can then monitor the internalization of the
micelles.827 In a different application, the Zentel lab used
pentafluorophenyl methacrylate (PFPMA) monomers to
synthesize a series of PPFPMA-b-PEGMEMA block polymers
that were crosslinked by nucleophilic bis-addition of spermine
to produce hydrogels for siRNA delivery.828−831 These
hydrogels formed stable complexes that were successful in
gene silencing via the delivery of siRNA; however, it was
discovered that only the smaller nanoparticles (40 nm in
diameter) were able to produce gene silencing. Other select
examples of this chemistry are listed in Table 1.

4.3. Copper-Catalyzed Azide−Alkyne Cycloadditions
(CuAAC)

Polymers that are used for gene delivery often are composed of
chemically diverse moieties used for various functions such as
nucleotide complexation, cellular internalization/targeting, or
endosomal escape. These charged, chemically complex
molecules can often limit the chemistry that can be used to
conjugate sensitive biomolecules to them. Pioneered by the
labs of Rostovtsev, Sharpless, and Meldal,832,833 copper-
catalyzed azide−alkyne Huisgen cycloaddition (commonly
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referred to as “click chemistry”) has been a substantial
breakthrough in the field of chemistry and chemical biology,
as it can easily couple biologically relevant molecules together
in a biorthogonal fashion. Both copper-catalyzed azide−alkyne
click chemistry (CuAAC) and copper-free strain-promoted
click chemistry (SPAAC) are highly lucrative for their high
yields, great functional group tolerance of substrates, and
simple reaction conditions. Novel advancements in this field
have provided a panoply of bio-macromolecules related to
gene therapy such as synthetic oligonucleotides, polymer
nanocomposites, cell engineering, and drug delivery.806,834−837

Although many researchers have now utilized this chemistry as
a tool to synthesize nonviral gene delivery vehicles such as
linear polymers,627 dendrimers,838 and liposomes,839 its use in
derivatizing polymers will be discussed here.
The landscape of chemical scaffolds employing CuAAC

strategies stretches far and wide, as many labs throughout the
decade have used this technique to improve the biochemical
properties of their delivery vehicles.997 CuAAC has been used
to attach targeting moieties to cationic polymers (such as the
ubiquitous PEI and PLL scaffolds), which has been reviewed
previously.45,998 This strategy has also been used to crosslink
hydrogels to form networks used for both drug and gene
delivery.856,999,1000 There are also multiple examples of unique
incorporations of this chemistry to synthesize polymers for
nonviral gene delivery. The Hennink lab synthesized a
copolymer of poly(hydroxyethyl methacrylate-co-hydroxyethyl
methacrylate propargyl alcohol) through ATRP, with a
carbonate-functionalized terminal alkyne, and grafted−to a
terminally-functionalized PDMAEMA azide.438 These brush-
like polymers were then evaluated for their ability to transfect
primate kidney fibroblasts (COS-7) and were shown to
improve efficiency in the presence of INF-7, a fusogenic
peptide derived from the influenza virus, when compared to
linear PDMAEMA and PEI. Similarly, Gao and coworkers have
made analogously constructed brushes via CuAAC with an
exceedingly high grafting density (1.34 side chains per
backbone carbon atom).1001 However, their utility as gene
delivery vehicles has not been reported. Reineke and coworkers
have developed a set of linear polymers synthesized by CuAAC
employing a trehalose or cyclodextrin (CD) diazide monomer
with an oligoamine monomer equipped with terminal
alkynes.627,850,1002 The carbohydrate fixtures on the polymer
served to improve the aqueous solubility and biocompatibility,
whereas the oligoamines could then complex the DNA
payload. Indeed, these oligoamine-carbohydrate copolymers
showed a lowered cytotoxicity and improved the transfection
efficiency in HeLa and H9C2(2-1) cells when compared to
jetPEI. The Pun lab used CuAAC to synthesize a PDMAEMA
polymer with a “sunflower” macromolecular structure, along
with similar comblike polymers.852 This was achieved by
cyclizing a poly(2-hydroxyethyl methacrylate) (PHEMA)
functionalized with both a terminal azide and propargyl ester
via CuAAC followed by further tailoring the macrocyclic
PHEMA sunflower with DMAEMA to afford the “petals”.
These polymers were shown to display a greater buffering
capacity, strong DNA binding ability, and effective mRNA and
DNA transfection efficiency compared to similar noncyclized
polymers.851,883 Yin and coworkers have developed a unique
star-shaped helical polypeptide anchored to 5,10,15,20-
tetrakis(4-aminophenyl) porphyrin (TAPP), which is function-
alized with a cationic guanidyl side chain via CuAAC.863 These
polymers were then complexed with a DNA cargo and utilized

for transfection studies. The incorporation of TAPP into this
polymer not only enables multivalent cationic guanidinium
side chains per polymer for increased cellular uptake, but also
the inherent properties of TAPP as a photosensitizer enabled
spatiotemporal control of nearly complete endosomal escape
upon irradiation with light (661 nm) and consequently led to
an improved cellular transfection efficiency in HeLa, B16F10,
and RAW 264.7 cells.
CuAAC and other biorthogonal chemistries can be used as

powerful tools to decorate micellar structures with small
molecules for enhanced cell-specific targeting groups. One
common concern in using this chemistry is the use of
copper(I) in these reactions, which can lead to undesired
cytotoxicity due to the residual copper content.1003 Although
SPAAC is a great alternative to circumvent this problem, the
cyclo-octynes used in this chemistry can be expensive or
difficult to synthesize. The Giorgio lab has made polymeric
micelles out of triblock polymers, wherein the end group is
decorated with an azide handle used to link alkyne-function-
alized mannose-targeting moieties to deliver siRNA to murine
macrophages.853 Interestingly, they have also directly ad-
dressed these cytotoxicological concerns by rigorously studying
the CuAAC-mediated conjugation efficiency and residual
copper content of their micelles.854 They found an optimal
window of conjugation efficiency, which balances both
transfection efficiency and cytotoxicity. This was measured
primarily by the concentration of copper sulfate used during
the click reaction, as copper sulfate concentrations between
0.25 and 0.75 mM showed a reduced cytotoxicity compared to
higher (1 mM) and lower (0.1 mM) concentrations. For their
azide-functionalized micelles, if azides are inadequately
conjugated with mannose, there would not only be minimal
cell recognition but the exposed unreacted azides themselves
caused cytotoxicity. Additionally, using excess copper (1 mM)
to fully functionalize these micelles results in an appreciable
copper-related cytotoxicity. This study does not discourage
CuAAC but, rather, vehemently argues that reaction
optimization should be of paramount importance for in vivo
applications.

4.4. Thiol Chemistry

Thiol chemistry, which includes the hydrothiolation of alkene/
alkyne bonds, nucleophilic Michael addition, disulfide
exchanges, and thiolactone modifications, has been a staple
in the field of bioactive materials and polymer chemistry for
several years, and it has been reviewed extensively.805,1004−1007

The ubiquity for these purposes is primarily due to the
inherent benefits associated with these reactions such as high
yields, rapid reaction rates, robust reagents insensitive to
oxygen or water, and minimal side products. However, some of
the benefitssuch as high reactivitycan be simultaneously
disadvantageous, as thiols are prone to react via radical- or
base-catalyzed processes under mild conditions with many
types of substrates. This challenge requires knowing the
specific purpose and functional groups required for the
construction of the polymers of interest and applications
thereof. These thiol−ene click reactions have attracted much
attention in the gene delivery field in the synthesis of peptide−
polymer conjugates due to the high yields and fast rates of
reaction, which can be applied to targeting delivery
systems.1008 The most common thiol−ene conjugation
reaction is the thiol−maleimide click reaction, as it has been
shown to be a very efficient and facile method to conjugate
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large biomolecules together.1009 This reaction has been use to
couple targeting biomolecules to cationic polymers to
formulate multifunctional polyplexes. For example, Lu et al.
conjugated both a maleimide-terminal PEG and maleimide-
terminal bombesin peptide designed to target the neuromedin
B receptor of tumor cells to their synthetic 1-aminoethyl
iminobis[N-(oleicylcysteinylhistinyl-1-aminoethyl) propiona-
mide] multifunctional carrier that showed enhanced siRNA
delivery in mice.911 The Jiang lab introduced a bacterial-
derived peptide to PLL polymers in order to facilitate blood
brain barrier penetration for an enhanced DNA delivery to
gliomas using the same thiol-maleimide chemistry.915,917 With
the same chemistry, the Wagner lab has made extensive
libraries of polymer-targeting moiety conjugates that exhibit
10- to 100-fold more efficient gene delivery than their
nonfunctionalized counterparts,918 and it has catalogued
various other chemistries that conjugate targeting moieties to
polymers.45 In another application of thiol−maleimide
chemistry, Talvitie and coworkers functionalized chitosan-
derived nanoparticles decorated with maleimides with a TrkB
binding peptide for a two- to fourfold increase in successful
pDNA delivery to murine macrophages compared to polymers
functionalized with a control peptide.908 Using a similar thiol
Michael addition chemistry, Kataoka and coworkers directly
linked lactose to siRNA for RNAi-mediated gene editing to
synthesize a pH-responsive conjugate that can release the
siRNA after endocytosis allowing for a rapid gene silencing of
luciferase acitivity.384,389 In an interesting application of bis-
maleimide crosslinkers, the Kim lab directly linked both sense
siRNA and antisense siRNA, forming stable and efficient
multimeric polyelectrolyte complexes that exhibited a nearly
complete gene silencing effect of their siRNA complex.874

A key characteristic of introducing thiols to polymers for
functionalization is not only for their utility as nucleophiles
but, as highlighted previously, their ability to form covalent and
bioreducible disulfide bridges that can crosslink polymers to
form hydrogels or attach functional handles for a controlled
release of cargo. Several well-characterized polymeric scaffolds
used for gene delivery have been modified with disulfide bonds
s u c h a s p o l y ( am i d o am i n e s ) , 7 2 2 , 8 8 4 − 8 8 6 , 8 8 8

PLLs,367,368,868−870,1010 PEIs,860,872,889,907 and PDMAEMA.895

The propensity of a polyplex to deliver DNA to cells based on
the network of disulfide linkages was examined by the
Goepferich group wherein the transfection efficiency of their
PEI-based siRNA delivery system is affected by the degree of
PEI branching; not only does increasing the branching of PEI
improve cellular uptake but increasing the disulfide bridges
also requires a careful balance between the two parameters for
efficient gene delivery.873 Indeed, Nam et al. used thiolated
PEIs as nanogels for a successful siRNA delivery.881 Ko and
coworkers synthesized a redox-sensitive diblock copolymer for
the co-delivery of doxorubicin and single-stranded DNA
(ssDNA).930 The two blocks of this polymer were linked via
disulfide bonds, and the assembled polyplex with doxorubicin
and ssDNA was transfected with HeLa cells, showing a high
efficacy of DNA and drug delivery. Many other examples are
presented in Table 1.
The Xu lab introduced α-lipoic acid, a naturally occurring

antioxidant, to ethylene diamine-functionalized PGMA poly-
mers to form a bioreducible nanogel with a disulfide core from
the α-lipoic acid, which, upon cellular internalization,
successfully released the siRNA cargo for gene silencing and
showed a threefold increase in eGFP-positive HepG2 cells

compared to the unfunctionalized PGMA polymers.891 Zhu et
al. designed triblock copolymer micelles, wherein the three
blocksPEG, PLA, and PEIwere each linked via disulfide
bonds and reinforced with hydrogen bonds.880 These micelles
showed an improved efficiency of the cellular uptake of
miRNA cargo for a potential gastric cancer therapy. Both the
Kataoka and Park groups have also used polyacrylates and
PEG-derived polymers decorated with sulfides to directly
tetherthrough disulfide bonds (cleavable linkage) or thiol-
maleimide coupling (non-cleavable linkage)siRNA for
controlled release.896,1011 The Kim lab uses both bioreducible
disulfide linkages and thiol-maleimide coupling chemistry to
build thiolated branched PEI networks that are conjugated to
peptides for tumor targeting via thiol−maleimide coupling, as
well as reduceable once endocytosed to release the DNA
efficiently.791,876−879 Overall, these functionalized PEI-based
polymers showed improved transfection efficiency and uptake
compared to their unfunctionalized counterparts.
Thiol-alkyne chemistry has been briefly explored in the field

of gene delivery, as the Cheng lab used it to “click” 2-
aminoethane thiol to a polyester, which was a propargyl-
functionalized tyrosine mimic.919 These polymers showed
excellent gene delivery properties and could be a novel non-
nucleophilic method to incorporate cationic amines into
polymers whose backbones are sensitive to nucleophiles.
Cook and coworkers synthesized a small library of hyper-
branched poly(ethylenimine-co-2-ethyl-2-oxazoline) copoly-
mers using propargyl tosylate as the initiator and potassium
ethyl xanthate as the nucleophilic end-capping agent.920

Aminolysis of the xanthate group followed by subsequent
photopolymerization provided the hyperbranched thiol−yne
functionalization. The abundance of amine groups on the
hyperbranched PEI derivatives synthesized through this route
showed an improved buffering capacity compared to
commercial PEI. Furthermore, these polymers have improved
transfection efficiencies and were found to be less toxic, which
emphasized the critical role of polymer architecture on gene
deliverability. Other applications of thiol−yne chemistry can be
found in the design of hydrogels, but their utility for gene
delivery has not been explored.1012

4.5. Diels−Alder Reaction

The Diels−Alder reaction has been an integral part of polymer
functionalization for multiple purposes such as polymer-drug
conjugates, nanomaterial assembly, attachment of targeting
moieties, and hydrogel synthesis.1013,1014 Akin to disulfides,
these reactions are reversible, albeit thermally. Therefore, the
design and implementation of these functionalities can provide
another crosslinking/de-crosslinking platform orthogonal to
pH or redox-responsive linkers. This technology has been used
for both drug and protein delivery via hydrogels crosslinked via
the Diels−Alder reaction.922−924 However, there are few
examples in the literature that explore the utility of Diels−
Alder chemistry as it relates specifically to polymer
functionalization in gene delivery. Brust and coworkers
successfully attached DNA to silica-coated gold nanoparticles
via the Diels−Alder reaction by attaching a maleimide group to
the end of a siloxane and reacting this to one of two different
dienes linked to the phosphate group of an oligonucleotide
(synthesized directly from a modified phosphoramidite and
subjected to an automated DNA synthesis).1015 The Shoichet
group directly linked siRNA oligonucleotides to both poly-
(lactide-co-2-methyl-2-carboxytrimethylene carbonate)-g-PEG
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cationic polymer via CuAAC and to trastuzumab, a
monoclonal antibody, via a maleimide/furan Diels−Alder
coupling.861 These structures showed improved gene silencing
and toxicity when compared to commercial transfection
reagents. The Hayes lab used the thermal degradability of a
retro-Diels−Alder reaction to release a tethered RNA
maleimide from both furan and pyrrole-based linkages to
silver nanoparticles.1016 This system can then be applied to
promote osteogenesis in human adipose stem cells by the
precise temporal photothermal release of siRNA using the
retro-Diels−Alder system.1017

4.6. Schiff Bases and Ketals

Schiff base chemistry, including imine and oxime linkages,
allows for degradable polymers due to the instability of the
hemiaminal intermediate generated under acidic aqueous
conditions. These modifications can be tailored to the specific
aim of the polymer, such as a pH-dependent release of cargo or
hydrolytically stable linkages. Many polymers that are
functionalized with these linkages for gene delivery are pH-
responsive hydrogels used to release their cargo upon
lysosomal or endosomal acidification post-endocytosis.808,1018

These oxime- or imine-linked hydrogels have been used as
both drug and gene delivery vehicles and will be discussed
below with extra selected examples depicted in Table
1.925,1019−1021

Similarly, another example of chemically reactive species is
hydrazide-functionalized polymers, which can readily react
with aldehydes to form the corresponding acyl hydrazones and
are sufficiently stable under most physiologically relevant
conditions.939 Montenegro and coworkers have recently
reported the efficient functionalization of poly(acryloyl
hydrazide) with a cationic aldehyde or a hydrophobic, aliphatic
aldehyde and screened their ability to deliver plasmid DNA,
siRNA, and mRNA to HeLa and HEK293 cell lines.939,1022 Lin
and coworkers also used these hydrazone linkers to make
comblike polymers for siRNA delivery.938 These polymers
contain a pH-sensitive ethyl acrylic acid block, a hydrophobic
butyl or hexyl methacrylate block, and either an N-
acryloxysuccinimide or β-benzyl-L-aspartate N-carboxyanhy-
dride block that can be used as a handle to fine tune the
grafting density of the cationic block. These comblike polymers
showed enhanced gene silencing when complexed to siRNA
compared to commercial transfection reagents.
Dong and coworkers developed a dual deliverable polyplex

of both doxorubicin and siRNA to cancer cells by designing a
complex assembly of folate-conjugated PEI, doxorubicin-
conjugated PEI via hydrazine linkages, and siRNA.941 Both
the siRNA and doxorubicin were able to be released selectively
upon internalization leading to improved gene silencing and
giving credence to systems with tandem drug and gene delivery
capabilities. Similarly, the Zhang lab made tandem gene/drug
delivery vehicles through functionalizing a tumor-targeting
PEI-based polymer with doxorubicin via imine linkages and
complexing it to DNA for a synergistic codelivery complex.940

Additionally, some alternative pH-responsive functional
groups, which do not include Schiff base chemistry, are
acetal/ketals, which can either be directly incorporated into the
polymer backbone or be found as functionalized side chain(s).
For example, the Murthy lab demonstrated that complexing
siRNA with 1,2-dioleoyl-3-trimethylammonium propane
(DOTAP), chloroquine, and a polyketal enhanced the delivery
efficiency of these nanoparticles to macrophages, as they

efficiently released cargo under acidification compared to
vehicles without the polyketal as evidenced by an increased
fluorescence of cells treated with the polyketal.926 The Kwon
group used linearized PEI with acetal-linked side chains to
improve both DNA and siRNA delivery to NIH 3T3 cells,
showing an improved internalization via confocal microscopy
and quantified by an approximately fourfold silencing of
eGFP.927,936,937 Guk and coworkers have also made linear PEI
polymers incorporating acetals into the backbone to enhance
the delivery of siRNA to macrophages.928 These polyplexes
resulted in a higher RNAi efficiency when compared to linear
PEI without acetals incorporated into the polymer, due to a
limited cellular unpackaging of these polyplexes without the
acetals. Dimde and coworkers have also developed a dual-
functional dendritic polyglycerol hydrogel complete with
benzacetal groups, terminal amines, and linked to PEI-
modified acrylamide via thiol-Michael addition.929 These
acetal-linked polymers also showed a controlled intracellular
release of the siRNA and caused a silencing of the GFP
expression in HeLa cells.

4.7. Ring-Opening Chemistry

Ring-opening reactions, although omnipresent in polymer
chemistry, have only recently been adopted for a macro-
molecular modification applied to gene delivery. These
reactions are thermodynamically driven by ring strain relief
facilitated by a nucleophilic attack of an alcohol, thiol, or
amine. Three-membered heterocyclic rings (e.g., epoxides and
aziridines) offer considerable strain and are often used for
these polymer functionalizations.1023 Like activated esters,
these functional groups serve as the foundation for post-
polymerization modifications.
GMA remains the most common monomer for the synthesis

of epoxide-containing, biologically applicable polymers.1024

Leroux and coworkers synthesized PGMA linear and star-
shaped polymers that were functionalized with different
amines, which gave rise to a mini-library of polymers that
bound DNA oligonucleotides well and had an improved
transfection efficiency compared to linear PEI.953,1025 Gao
went on to make a PGMA-derived multifunctional polymer
conjugated with cyclodextrin (CD), ethylenediamine, and
guanidine side chains that provided a system that was termed
“aggregation-induced emission” to trace whether or not the
polyplex formed successfully released the DNA cargo.948 In a
similar study, the Liu lab reported the synthesis of PGMA-
derived polymers functionalized with primary and secondary
amines, which showed an improved transfection efficiency and
a remarkable reduction in cytotoxicity compared to commer-
cial PEIs.952,1026 Although an analogous post-polymerization
functionalization strategy involving aziridine ring-opening has
many examples in the literature, there has not been any
substantial work done when applied to developing unique
polymers for gene delivery.1027

However, a different prime example of these monomer-
based reactive precursors subject to post-polymerization
modifications include azlactone-functionalized polymers. A
comprehensive review of these polymers has been reported
previously.972 First utilized by Heilmann and coworkers in
1984, poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be
functionalized by primary amines via a nucleophilic ring-
opening reaction affording a chemically stable amide link-
age.1028 Lynn and coworkers initially used azlactone-derived
polymers to develop layer-by-layer (LbL) assemblies1029 and
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then subsequently utilized this chemistry to make PVDMA-
based polymers for gene delivery by incorporating both
primary and tertiary amine functionalities into their polymers
to make a library of 12 cationic polymers.971 They discovered
that an improved gene delivery was achieved when both
shorter carbon chain lengths of pendant amine groups and
tertiary amines were used.

4.8. Host-Guest Chemistry

Supramolecular assembliesformed by noncovalent interac-
tions such as electrostatics, hydrogen binding, π-π stacking, or
van der Waals interactionshave attracted interest in their
biomedical applications.1030−1032 The propensity for these
structures to self-assemble due to the association strength of
these structures provides researchers a foundation to exploit
these properties and design nanoparticles for gene delivery.1032

For example, the interaction between β-cyclodextrin (β-CD)
and adamantane (Ad) is a well-documented host-guest
interaction.955 What is unique about this interaction is β-CD
possesses a single hydrophobic corewhereby other hydro-
phobic moieties (such as Ad) can noncovalently interactas
well as a hydrophilic outer surface. This property imparts
unique amphiphilicity to β-CD, and thus these structures can
form inclusion complexes with other various hydrophobic
guest molecules such as Ad.
The Davis lab developed polycationic oligomer libraries

conta in ing β -CD in the backbone to de l ivery
siRNA.113,118,994,995 These nanoparticles were shown to be
less than 100 nm in size, and in order to circumvent hepatic
clearance in vivo, Ad-PEG and Ad-PEG-transferrin conjugates
were appended to the resultant polymer via host-guest
interactions. This improved gene delivery efficiency via a
tumor-specific targeting in both mouse and cynomolgus
primate models and helped avoid the rapid renal clearance of
these particles. Additionally, the prime candidate from these
experiments (termed CALAA-01) showed enough promise to
be taken to clinical trials using an siRNA sequence that blocks
expression of the M2 subunit of ribonucleotide reductase. This
is the first example of these types of nonviral delivery vehicles
taken to clinical trials, giving credence to its ability to condense
siRNA, its low cytotoxicological profile, and tumor-specific
targeting.
The Xu lab functionalized PGMA polymers with an

adamantyl amine, followed by complexing these polymers
with an ethyleneamine-functionalized PGMA(PGEA)-β-CD
polymer, creating a branched cationic polymer capable of
complexing DNA exceedingly well.983 This system exhibited a
better complexation ability than either of the individual
polymers themselves and reduced cytotoxicity. They also
examined how the topologies of this host-guest chemistry
affect gene delivery efficiency, by synthesizing polymers
(adamantyl-modified α-CD (Ad-CD) or α-CD-grafted PGEA
(CD-PGEA)) with varying amounts of β-CD-cored CD-
PGEAs and discovered the α-CD-Ad polymers showed the
highest gene delivery ability. All these polymers showed a
reduced cytotoxicity when compared to commercial trans-
fection reagents as well.
Another example of host-guest chemistry used in this way is

by the Tang lab, whereby PEI polymers were affixed with Ad/
β-CD pairs to synthesize intriguing co-delivery vehicles for a
cancer treatment.988,989 This theranostic approach, where an
adamantyl prodrug of paclitaxel (PTX) was conjugated to a β-
CD-conjugated PEI-based polymer, enabled a simultaneous

release of short hairpin RNAs (shRNAs) and a prodrug
activation of PTX to provide a synergistic anticancer effect in
vivo. Their system downregulated the expression of surviving
and Bcl-2 genes while also providing a targeted release of PTX.
This synergy proved more effective than either a single dose of
PTX or shRNA delivery for ovarian cancer therapy separately.
The same lab also developed co-delivery systems for both 5-
fluoro-2′-deoxyuridine/DNA and doxorubicin/DNA using
Ad/β-CD host-guest chemistry with PEI polymers.1033,1034

Additionally, Zhao and coworkers developed a system for the
codelivery of camptothecin (a topoisomerase inhibitor used for
the treatment of cancer) and siRNA for cancer therapy.991

Again, a prodrug of camptothecin containing an adamantyl
group and disulfide linker was conjugated to a β-CD-amino
dendrimer to both deliver camptothecin and bind to siRNA,
followed by a release of the siRNA and glutathione-mediated
disulfide reduction to release camptothecin. These amphiphilic
structures formed vesicles in an aqueous solution, which then
provided an improved delivery for camptothecin (an otherwise
poorly aqueous soluble drug) and simultaneous intracellular
imaging, as fluorescence was able to be detected upon
camptothecin release. Similarly, Xu and coworkers co-delivered
doxorubicin and DNA using coated silica-based nano-
particles.992 The silica nanoparticles were functionalized with
Ad and subsequently conjugated to a β-CD core tailored with
two ethanolamine-functionalized PGMA arms. This system
showed more evidence of a synergistic gene/drug co-delivery
treatment option for cancer.
Another example of host-guest chemistry used to develop

polymeric gene delivery systems is the work done by Palanca-
Wessels and coworkers, where they synthesized a biotinylated
cationic block terpolymer composed of DMAEMA, nBMA,
and propylacrylic acid and bound it to a streptavidin-
conjugated monoclonal antibody directed against CD22 for
gene silencing.978 Taking complete advantage of the exceed-
ingly tight binding of biotin to streptavidin (Kd ≈ 10−14 mol/
L), the pH-responsive cationic block can not only complex
siRNA but easily and selectively associate with the antibody to
specifically target DoHH2 cells, a transformed follicular
lymphoma cell line. Additionally, HeLa-R cells expressing
CD22 were shown to be transduced more effectively than CD-
22 negative HeLa-R cells, giving credence to the stability of the
biotin−streptavidin linkage. Other examples of host-guest
chemistry are also depicted in Table 1.

4.9. Polymeric Topology: Telechelic Backbones

In addition to functional monomers that can act as chemical
anchors for functionalization, there are known examples of
functional macromolecules that can be conjugated post-
polymerization and applied as gene delivery vehicles. Among
the several different classes of functional polymers, end-
functionalized polymers possess many important structural
elements as vehicles for gene delivery. Telechelic polymers are
end-functionalized polymers that bear reactive end groups at
both chain ends and can either be homotelechelic (same
functionality at both chain-ends) or heterotelechelic (differing
functionality).1035 These types of polymers necessitate well-
controlled polymerization techniques, such as ATRP or RAFT,
to ensure high chain-end fidelity for functionalization.
Telechelic polymers can be used as cross-linkers, chain
extenders, and precursors for block/graft copolymers.
Although these polymer types have been used for a broad
range of applications such as drug delivery, peptide/protein
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conjugation, and imaging/sensing and have been reviewed
previously,1035,1036 their utility as gene delivery vehicles will be
explored below, and relevant polymers displaying this
architecture are detailed in the “topology” column of Table 1.
As discussed previously, functionalizing polymers via

activating esters has been long established, and it permits
modifications to both the end groups or the polymer
backbone. The Kataoka group synthesized a heterotelechelic
polymer functionalized on one end with a cholesteryl steroid
via carbodiimide-mediated amidation and a cyclic targeting
peptide on the other.844,845 This enabled both an improved
colloidal stability of the complexes as well as cell-specific tumor
targeting for the genetic material. The Lewis lab synthesized a
folic acid end-functionalized PMPC-b-PDMAEMA diblock
polymer for cell-specific folic acid receptor targeting.1037,1038

This multifunctional charged polyelectrolyte with a single folic
acid end group linked via an amide linkage was found to be
colloidally stable and achieved a significant transfection
efficiency to cells lines overexpressing folate receptors (MCF-
7 and KB cells).1038 Similarly, Benoit and coworkers
synthesized a macro-CTA end-functionalized with folic acid
for tumor targeting.848 This enabled the synthesis of cell-
specific PDMAEMA-b-P(DMAEMA-co-BMA-co-propylacrylic
acid) diblock copolymers for efficient siRNA delivery and
provided a useful synthetic strategy to apply this CTA to other
polymers as well. Saeed and coworkers also synthesized a
similar system with a homotelechelic folic acid functionality,
with an additional disulfide linkage incorporated in the
backbone that tethered the hydrophobic poly(lactic-co-glycolic
acid) (PLGA) and hydrophilic PEGMA blocks.858 Xu and
coworkers successfully synthesized a heterotelechelic PHPMA
homopolymer and attached a tetra-antennary mannose
dendrimeric end group via pyridyl disulfide-mediated attach-
ment and a covalently linked thiol-modified siRNA oligonu-
cleotide via disulfide bonds, which would release the siRNA
cargo upon intracellular exposure to glutathione.859 Homo- or
heterotelechelic polymers are also building blocks for the
development of functional hydrogels. Networks formed with
these can undergo de-cross-linking via Diels-Alder chemis-
try,923 redox-responsive chemistry,881 or pH-responsive
chemistry.856 Table 1 shows multiple examples of hydrogels
and nanogels synthesized with a chemoselective release of their
nucleic acid cargo. These strategies for modifying hydrogels
and nanogels were recently explored extensively in various
reviews.27,1018

From the diverse chemistry to functionalize polymers
presented in this section, it is evident that each modification
has been used to fulfill a certain biological purpose: aiding in
endosomal escape, facilitating cargo release, cellular targeting,
or improving polyplex stability. Although many of these
reactions are robust, versatile, and possess both a broad
substrate scope and a plethora of potential applications, a
universal reaction for functionalizing all polymers to fulfill
every biological need does not exist. While researchers can
choose from several synthetic pathways when they impart
functionalities to polymers, they are also bound by the
limitations of each chemical method that is available. The
constant innovation of efficient and bioorthogonal bioconju-
gation techniques will lead to exciting ways of functionalizing
polymeric gene delivery vehicles that can be tailored to meet
precisely formulated therapeutic goals.

5. POLYPLEX PHYSICAL PROPERTIES AND THEIR
IMPACT

Although chemical composition and polymer architecture are
powerful design parameters that can direct polyplex fate, the
impact of physical attributes such as size, shape, and charge
density cannot be ignored. Bio-interfacial phenomena that
govern whether polyplexes can cross biological barriers are
extremely sensitive to physical aspects of polyplex design. In
this section, we discuss the roles played by polyplex size
distribution, morphology, and surface charge. We also briefly
mention recent studies demonstrating the efficacy of
decationized or “neutral” polyplexes that question long-held
assumptions about the necessity of a net positive surface
charge. We then examine the effect of mechanical stimuli on
transfection outcomes and finalize this section describing
common and novel physicochemical characterization techni-
ques used to shed light into the polyplex formation process and
the properties of the resulting polyplexes.

5.1. Size

Size has long been recognized as a critical design attribute in
nonviral gene delivery,1039,1040 as the biological interactions of
engineered nanoparticles with its physiological milieu are
highly sensitive to particle size distribution.1041 To navigate
multiple extracellular and intracellular delivery barriers, we
must pay attention to how polyplex size distribution influences
bio-interfacial interactions pertinent to in vivo as well as in
vitro administration. At an organism level, size has been
implicated in margination and other vascular transport
phenomena,1042 biodistribution and pharmacokinetics,1042,1043

protein corona formation,507,1044 and subsequent interrogation
by immune cells such as macrophages.1045 At the cellular level,
there is strong evidence that membrane association, internal-
ization via a variety of pathways, and finally intracellular
trafficking events are all size-dependent.159 In this section we
will first describe the size specifications targeted for different
therapeutic applications, summarize synthetic strategies used
to control polyplex size distribution, and summarize research
focused on elucidating polyplex size effects on transfection
efficiency, toxicity, and inter-organelle transport.
When they encounter the plasma membrane of targeted

cells, moieties larger than 1 kDa are prevented from
permeating through the membrane and are instead processed
via endocytotic pathways.1046 Larger particles ranging from
500 nm to 5 microns in size are rapidly cleared via
phagocytosis, while those smaller than 200 nm typically elicit
responses similar to those of viral vectors.1039 Whether these
sub-200 nm nanoparticles undergo macropinocytosis, caveolar-
mediated, or clathrin-dependent pathways is undoubtedly cell-
type dependent, because the composition of anionic
proteoglycans and lipid domains on the plasma membrane
can play a significant role. However, if polyplexes are designed
to avoid clathrin-dependent modes of cellular entry, instead
seeking pathways exploiting lipid rafts, they stand a higher
chance of mimicking viral voyages within the cell, bypassing
endosomal acidification and lysosomal degradation and
directly handing over nucleic acid cargo to the endoplasmic
reticulum.159 In this context, Hoekstra and coworkers have
described an elegant example of employing size as a lever of
control to manipulate intracellular routing and promote
specific organelle targeting.248 They concluded that clathrin-
mediated pathways are preferred by nanoparticles smaller than
200 nm in diameter, whereas larger particles (up to 500 nm in
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diameter) were internalized predominantly via caveolar
channels, allowing them to evade lysosomal processing.
Using chemical inhibitors of endocytotic pathways,1047 they
also observed prominent differences between lipoplexes and
polyplexes, with the former almost exclusively being trans-
ported via clathrin pits and polyplexes adopting a combination
of caveolar and clathrin-mediated routes.1048

In addition to intracellular routing, polyplex size specifica-
tions must also take into account the wide-ranging size
constraints presented by diverse biological barriers, especially
when systemic administration and long circulation lifetimes are
desired (Figure 36). For instance, while particles smaller than
the renal membrane pores (6 nm) are rapidly cleared via the
kidneys, particles larger than 200 nm will be quickly cleared
from circulation via the spleen and other RES mechanisms.1039

Brain-targeted delivery requires passage through the tight
junctions of the blood-brain barrier through receptor-mediated
transport, transcytosis, or through carrier-mediated transport
since passive diffusion allows only lipophilic molecules smaller
than 400 Da.1050 It is widely agreed that an inverse correlation
exists between nanoparticle size1051 and blood-brain barrier
transport, necessitating the design of ultrasmall polyplexes that
are functionalized with ligands such as glucose, transferrin, or
synthetic peptides.390,1051,1052 Another recent study high-
lighted the difficulty of precise size control to cross the lung
periciliary layer (20−40 nm) to deliver anti-sense oligonucleo-
tides for lung cancer treatment.1053 Particles larger than 100
nm in diameter would be vulnerable to alveolar macrophage
capture (particles), while excessively small particles would
accumulate in the kidney. Therapeutics for cancer generally are
said to exploit the enhanced permeability and retention (EPR)
effect, wherein solid tumors are perfused by a leaky vasculature
and dysfunctional lymphatic vessels, allowing nanomedicines
to accumulate selectively in cancerous tissues. This “passive”
EPR-based targeting strategy has been a strong motivation for
designing nanoparticles possessing sub-100 nm diameters;
however, a recent report by Chan and coworkers offers
compelling evidence that the EPR concept is not wholly
accurate.1054 Using a three-dimensional (3D) imaging of
patient-derived models of cancer tissue, they discovered that
gaps in cancerous vasculature are extremely rare and that active
trans-endothelial pathways are the preferred mechanism for
nanoparticles to extravasate into tumors. This could explain the

discrepancy observed between nanoparticle size specifications
for cancer therapy and the actual dimensions of vascular gaps;
although leaky blood channels supplying tumors can range in
size from 380 to 880 nm, particles larger than 100 nm do not
penetrate tumor tissue as effectively as sub-100 nm particles
do.1055−1057 Further, the EPR effect is much more pronounced
in mouse models, which possess a much denser vasculature
than humans.1058 As a result, an EPR-based accumulation of
nanocarriers in solid tumors may not be viable when translated
from mouse studies to large animals. Andersen et al.1059

reported highly heterogeneous trends in the accumulation of
nanocarriers between tumors implanted in 11 dogs, suggesting
that patient-to-patient variability and the stage of tumor
growth are critical variables.1060 Choi and coworkers detailed
the size dependence of the EPR effect by studying the trade-off
between circulation lifetime and non-specific tissue uptake of
nanoparticles of varying sizes in tumor-bearing mice.1061

Hepatic gene silencing is also size-sensitive, since Kupffer
cells, parenchymal, and non-parenchymal cells within the liver
selectively uptake particles of different size ranges upon intra-
portal administration.1062

The use of gold or other metallic nanoparticles as templates
enables facile modulation of particle size, allowing for
systematic examination of particle size effects. In addition to
the ease of fabrication and tunability of size and shape, gold
nanoparticles can be readily functionalized with thiol-based
molecules containing cationic moieties allowing nucleic acid
payloads such as siRNA and mRNA to be incorpo-
rated.1063−1066 Among PEI-decorated gold nanoparticles, the
transfection efficiency was found to be much higher among
sub-10 nm populations compared to sub-100 nm particles, a
difference that the authors attributed to the endosomal escape
efficiency displayed by ultrasmall gold nanovectors.1067 In
contrast, Narain and coworkers systematically examined the
effects of size distribution among three subsets of gold
nanoparticles conjugated to glycocationic polymers (10, 40,
100 nm). They discovered that intermediate sizes had the
highest transfection efficiency and that the smallest particles
bound too tightly to their DNA payloads, hindering a cytosolic
release.1068 They observed that, although larger particles
exhibited a higher cell uptake, these uptake pathways were
associated with significant cytotoxicity. Another study
concluded that sub-10 nm particles alone could permeate

Figure 36. Schematic summarizing the impact of aspect ratio, morphology, and particle size on preferential accumulation in various organs of
therapeutic interest. Reprinted with permission from ref 1049. Copyright 2017 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

BC

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00997?fig=fig36&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


nuclear pores to deliver ODN cargoes,1069 although other
reports suggest that nuclear entry by the nanoparticle vehicle
may not be required for effective nuclear entry of the payload.
Gold nanoparticles are well-suited for studying the effects of
carrier size on biodistribution, since the gold content can be
easily evaluated via inductively coupled plasma-mass spec-
trometry, without the need for fluorescent or radioactive labels.
A recent study found that, while larger particles (42.5 and 61.2
nm) accumulated mainly in the liver and the spleen, smaller
particles (6.2 and 24.3 nm) were broadly distributed all over
the body, including therapeutically relevant organ targets such
as the heart and the lung.1043 Silica nanoparticles are also
attractive scaffolds for studying particle size effects, since their
diameters can be tuned by modulating process parameters
during nanoprecipitation as well as via microfabrica-
tion.1042,1070 Moreover, the incorporation of aminosilanes
during silica nanosphere preparation as well as the large surface
areas afforded by its mesoporous architecture1071 enables high
DNA loading and control over charge density. It was
discovered that, as silica nanosphere diameter increases, the
DNA binding capacity is diminished even while cell uptake was
improved many-fold (ostensibly due to the higher sedimenta-
tion velocity of larger particles). Because of this trade-off
between the uptake and DNA binding, nanospheres of
intermediate diameters (330 nm) were identified as the best-
performing vectors.1072

Sequence-defined cationic polypeptides have also been
proven to form ultrasmall and monodisperse polyplexes (<10
nm), making them an effective vehicle for targeted tumoral
delivery, especially with the addition folate tags.1073 Merely
changing the sequence, composition, and degree of polymer-
ization of the polypeptides allows the realization of different
polyplex size regimes. In a study that focused on understanding
the role played by the peptide/pDNA complex size, although
large complexes worked best during transfection, small
complexes (400 nm) were internalized more efficiently.1074

Segura and coworkers have employed bovine serum albumin
(BSA) as the nanoparticle core, wherein native BSA molecules
were functionalized with ATRP initiator groups, following
which cationic PDMAEMA brushes were grafted from the BSA
core via SI-ATRP.1075 Polyplex diameter was tuned by
modifying the length of the PDMAEMA chains during
ATRP; however, no discernible size effects were found,
possibly due to the narrow range of sizes accessed (5−15
nm). Nevertheless, this synthetic strategy can be applied to
protein cores of various sizes and shapes to create polyplexes of
diverse morphologies and size regimes.
Unlike with inorganic nanoparticle cores and polypeptides,

precisely controlling the size distributions of nucleic acid
assemblies formed using synthetic polymers presents greater
challenges. Multivalent polymer architectures such as den-
drimers208 and star polymers1076,1077 rely on the molecular
weight modulation of polymeric arms to achieve desired size
distributions, whereas, in the case of linear polymers, the
relationship between molecular weight and polyplex size may
be non-monotonic due to differences in polymer-DNA binding
strength.1078,1079 A common observation across these studies is
that, even though larger polyplexes may enjoy inherent
advantages of higher settling velocities and enhanced cellular
contact, smaller polyplexes internalize in a more efficient
fashion and are able to travel more rapidly through the
crowded cytosolic environment to reach the nuclear
periphery.251,1080 Polyplexes of intermediate size ranges are

perhaps best positioned to balance cell uptake, payload release,
and intracellular dynamics.1081 Although larger particles
performed better in vitro, intermediate-sized systems worked
best in balancing circulation stability with cell uptake. Zentel
and coworkers engineered nanogels constituted from well-
defined cationic triblock polymeric micelles that were cross-
linked to preserve their size and morphology even after siRNA
complexation, allowing precise adjustment of nanogel size
distributions to tune gene-silencing outcomes.828−830 Using
this platform, they demonstrated that size could be used to
manipulate the intracellular polyplex distribution, with smaller
nanogels found to evade endosomal capture at higher rates
than their larger-sized counterparts.
Tuning self-assembly conditions as well as block copolymer

compositions to generate micellar architectures of targeted size
ranges would be a powerful way to resolve the trade-off
between prolonged circulation and cellular uptake.662,1082,1083

However, the synthesis and processing of micelles with well-
defined size distributions is not only experimentally challeng-
ing but also requires careful physical characterization. Although
polymeric micelles are a promising platform for engineering
size-controlled polyplexes, their excessive reliance on PEG
blocks of varying lengths and architectures to prevent
undesired aggregation is problematic since PEG does not
always guarantee colloidal stability. For instance, Reineke and
coworkers reported that, when started from a uniform
population of PEGylated micelles, micelleplexes formed by
complexing micelles with ribonucleoproteins (RNPs) in water
were severely aggregated and their diameters were found to be
5 times larger than those complexed in PBS.667 On the other
hand, when pDNA payloads were used instead of RNPs, the
same micelleplex delivery system formed well-defined pop-
ulations with narrow size distributions in both PBS and in
water,666 underscoring the numerous experimental subtleties
inherent to the use of micelles as gene delivery vectors.
We also draw attention to the creative applications of

nanoparticulate systems in gene delivery, particularly nano-
carriers engineered from inorganic materials such as gold and
other metallic nanoparticles,1084,1085 silica-based nanopar-
ticles,1086,1087 quantum dots,1088,1089 recombinant pro-
teins,1090,1091 and carbon nanotubes1089 as well as organic-
inorganic hybrid systems.1092 These approaches allow us to
directly control polyplex size by engineering particle cores of
desired morphologies. We redirect readers to more focused
reviews summarizing these developments.86,1092−1094 While
measuring polyplex size distributions, most researchers employ
DLS by default, although these readings do not accurately
represent the actual polyplex size distribution within serum-
rich biological environments. Flow cytometry,1095 nanoparticle
tracking analysis,1096 and Taylor dispersion analysis1097 could
be incorporated into polyplex characterization workflows to
complement DLS. Further, most studies focused on examining
polyplex size effects tend to be observational in nature rather
than deliberately designed. Thoroughly understanding the
contribution of polyplex size to pharmacokinetic and toxicity
profiles of gene therapeutics relies on adopting highly
controlled polyplex formulation methods that enable us to
“dial in” precise polyplex size distributions. Examples of such
approaches, such as microfluidics-assisted assembly and
confined impingement jet mixing, are discussed in Sections
6.4 and 6.5. Transitioning from “a posteriori” to “a priori”
frameworks of studying polyplex size will lead to safer and
more effective polymeric vehicles.
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5.2. Shape

The recognition of particle shape as a key design parameter has
been growing steadily in the biomaterials community, largely
due to the recent spurt in fabrication methods being innovated
to create complex non-spherical morphologies. The challenge
inherent to accessing exotic non-spherical shapes is that
spherical conformation is most energetically favorable to
nanoparticles since it possesses the least surface area to
volume ratio. Unlike with engineered nanoparticles, non-
spherical shapes are abundant in nature, with bacteria, viruses,
and pollen employing particle geometry as a key design motif
to accomplish their biological functions. The fact that viral
pathogens exist in a wide range of shapes, from spherical,
wormlike, rods, and ellipsoids, is thought to be a contributing
factor to tissue-specificity or viral tropism. Theoretical models
of vascular transport often favor nanoparticles possessing non-
spherical morphologies since the rolling or tumbling motions
of high-aspect-ratio particles could align them with the blood
flow, imparting favorable vascular transport characteristics and
enhancing margination (Figure 37).1098,1099 Long circulation

times, immune evasion, biodistribution profiles that avoid first-
pass organs such as the liver, kidneys, and spleen, and
enhanced cellular uptake are some of the benefits of
engineering nanoparticles with controlled geometries.1100−1107

While the role of nanoparticle shape in cell uptake,1108

organelle distribution, and in vivo transport has been
extensively studied by the drug delivery community,1090,1091

particle shape and particle orientation at the time of
endocytosis has largely been unexplored in polymeric gene
delivery.1049,1109−1112

Shape control of polyion complex micelles has been
demonstrated in several studies. Mao and coworkers assembled
PEG-b-polyphosphoramidate (PPA) polymers with plasmid
DNA payloads in solvents of varying polarity to achieve
morphologies ranging from spherical to rings, flexible worms,
and rigid rod-shaped micellar structures.1113 Subsequently,
Mao’s group moved away from block copolymers to explore
the roles of PEGylation length and graft density in PPA-g-PEG
polymers to effect shape control.1114 Shape variation was

achieved without resorting to organic solvents during
micelleplex assembly, and computation calculations aided in
a systematic exploration of design parameters of graft polymers
such as charge density, PEGylation length and graft density.
The “DNA compaction factor” summarized how the
competition between PEG steric repulsion and electrostatically
driven DNA condensation influenced morphology as well as
transfection outcomes. PEGylation has been a convenient lever
of control to engineer morphological transformation519 with
cleavable PEG coronas mediating rapid changes in shape.
While wormlike micelles had superior colloidal stability and
longer circulation lifetimes, PEG shedding induced trans-
formation to spherical micelles1115 that exhibited superior
transfection performance.1116 Modulating PEG brush density
and length in multi-arm structures to vary “crowdedness” has
been shown to control polyplex aspect ratios and, with higher
PEG loadings, promote rod formation and impart structural
rigidity.1117 Other studies focused on optimizing the polyplex
aspect ratio through PEGylation control have pointed out that,
for aspherical polyplexes, moderate aspect ratios must be
employed, with cell uptake hindered when extremely elongated
polyplexes were generated.1118 PEG-alternatives such as
zwitterionic molecules446,1119 and poly(2-ethyl-2-oxazoline)588

(Section 3.4) have also proven to be effective in obtaining
polyplexes of desired aspect ratios. Brush polymers are highly
versatile scaffolds for the shape control of polyplexes since
charge density, backbone lengths, arm lengths, and brush
density can be independently controlled to yield rods and
cylinders of varying aspect ratios and rigidities.176

Since engineering non-spherical nanocomplex shapes
through polymeric self-assembly processes is challenging,
several researchers have turned instead to inorganic particle
templates of varying morphologies. A modular approach
combining gold,1120,1121 graphene,1122 carbon nanotubes,1123

silica,1124 or magnetite1125 nanoparticles possessing unique
geometries such as peapods,1125 rods, or ellipsoids1124 with
surface modification tools such as ATRP has generally been
effective. For instance, nanostructured microrods were
prepared by using filtration membrane pores as templates,
and LbL coatings consisting of PEI vehicles and plasmid DNA
cargo were applied subsequently to enhance phagocytosis by
alveolar macrophages.1126 When mesoporous rod-shaped silica
particles were exposed to human serum and plasma, they not
only acquired a much larger quantity of coated proteins than
their spherical counterparts but also displayed distinct shape-
dependent adsorption patterns when the composition of the
protein corona was analyzed.1127 The Steinmetz group has
developed a unique approach to accessing non-spherical
morphologies, wherein plant viruses such as the Tobacco
Mosaic Virus are PEGylated and used as delivery vehicles.
Since the Tobacco Mosaic Virus can be engineered to be rod-
shaped or spherical, they offer a means to systematically study
the contribution of particle geometry on biodistribution and
pharmacokinetic profiles.1128 Similarly, virus-mimetic “nano-
berries” have exploited supramolecular assembly and aspect
ratio engineering to recapitulate the pH-sensitive disassembly
of viruses within host cells.1129 Desimone and coworkers have
employed particle replication in non-wetting templates to
encapsulate siRNA within PLGA particles (80 × 320 nm in
size, Figure 38) with up to 50% encapsulation efficiency.1130

Subsequent to soft lithographic processing, these particles were
coated with lipids and silenced genes associated with prostate
cancer. The Desimone lab has also engineered bioreducible

Figure 37. Effect of particle shape on margination and hydrodynamics
within blood vessels. The particle shape and anisotropy can also be
exploited to enhance cellular targeting and uptake. Reprinted with
permission from ref 1049. Copyright 2017 American Chemical
Society.
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hydrogel carriers of siRNA of controlled morphologies1131

using this templated particle fabrication method and has
demonstrated protein particle templates for an RNA replicon-
based vaccination.1132

Similar to the diversity of viruses, nonviral gene delivery
research must take polyplex shape into serious consideration;
indeed, the development of non-spherical polyplexes that
possess suitable nucleic acid condensation and delivery
capabilities can dramatically transform transfection outcomes.
In particular, polyplexes wherein sizes are jointly optimized
with aspect ratios promise to overcome multiple intracellular
and extracellular barriers faced by spherical particles.1133

5.3. Surface Charge

The zeta potential is a commonly used estimate of polymer
charge density and is typically calculated from electrophoretic
mobility measurements in capillary cells, under the assump-
tions of the Helmholtz-Smoluchowski model. In addition to
the electrokinetic characteristics of the uncomplexed polymer,
polyplex zeta potentials are also an important part of the
characterization workflow and are usually studied as a function
of charge ratios or N/P ratios. Electrokinetic characterization is
motivated by three reasons: (1) In conjunction with gel
migration assays, zeta potential values help researchers
determine the optimal N/P ratio to achieve complete payload
encapsulation and protection. (2) Polyplex zeta potential has
frequently been touted as a strong predictor of transfection
efficiency as well as cytotoxicity stemming from membrane
disruption and rupture. (3) Polyplex colloidal stability, protein
corona composition, and complement activation are intricately
linked to the charge density of the polymeric vectors. In this
section we will discuss the modulation of zeta potential to
optimize cellular uptake, whether high transfection can be
achieved even at lowered charge densities, and charge-
switchable polyplexes.
Early studies pointed out the necessity of a net positive

charge for polymers to condense nucleic acids into tightly
packed toroidal structures, to prevent nuclease entry,1134 and
more importantly, mediate non-specific endocytosis by
exploiting electrostatic attractions with the negatively charged
cell membranes.1135 However, polyplexes possessing a positive
zeta potential were neutralized through the adsorption of
negatively charged proteins, explaining why transfection is

frequently inhibited in serum-rich media.1136 Given the critical
biophysical role played by a polyplex charge within each
mechanistic step of the nucleic acid delivery process, right from
uptake to endosmolytic escape, several groups embarked on
systematic experimental efforts to delineate the effects of
charge density and molecular architecture. Anderson and
coworkers developed a library of nearly 500 PBAEs and
concluded that the top-performing polymers shared a common
structural motif characterized by a high charge density.464 High
surface charge was identified as prerequisite for effective
nucleic acid delivery in multiple studies,1137 spanning diverse
cell types such as macrophages,1138 pulmonary epithelial
cells,1139 and even in mouse xenograft models of cancer.1140

Instead of assuming a linear monotonic relationship between
surface charge and transfection performance, several groups
adopted to a more nuanced approach to optimizing surface
charge, recognizing that electrostatic interactions are influ-
enced by polymer architecture,1141,1142 molecular weight,1140

and environmental parameters such as solvent pH and
counterion valency.1143 Architectural tuning of cationic
polymers by adjusting the proximity between charged groups
in complex multivalent architectures such as comb polymers,
brushes, dendrimers, and hyperbranched polymers can have a
profound impact on the charge density and rigidity of the
polymeric vehicles even when identical cationic functional
groups with the same pKa are utilized.454 A combined
experimental and theoretical study of ionenes revealed that
the complexation mechanism between the polymer and its
payload is dictated by the interplay between molecular weight
and charge density.1144 A statistical design of experiments
(DoE) that aided an investigation of a library of poly(2-ethyl-
2-oxazoline)/PEI copolymers revealed that the optimal
combination of molecular weight and charge density was
payload-dependent and that the sweet spot was much narrower
for RNA payloads compared to plasmid DNA.1145 Borroś and
coworkers synthesized PBAE polymers incorporating different
mixtures of oligopeptides of anionic/cationic charge residues
with the objective of tuning a polyplex zeta potential.1146

Surprisingly, they found that polyplex zeta potential did not
follow the expected trend in accordance with the charge
density of the cationic/anionic oligopeptides used; instead, the
charge borne by polyplex surfaces was shaped by the packing

Figure 38. (A) Scanning electron microscopy (SEM) and (B) TEM images of lipid-coated PLGA nanoparticles encapsulating siRNA. Atypical
aspect ratios and rod-shaped complexes could be achieved using soft lithography. Reprinted with permission from ref 1130. Copyright 2012
American Chemical Society.
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distribution of the polymers and the nature of cationic
functional groups employed. Ultimately, the zeta potential
must be treated with caution, as it is not a simple additive
quantity that can be “dialed in” by stoichiometrically balancing
cationic and anionic moieties. It is an approximate global
measurement of surface charge that does not capture the
inherent heterogeneity of charge distributions and binding
states. While zeta potential measurements may be useful in
comparing formulations from multiparametric libraries and
deriving structure-activity correlations, they may not always be
predictive of cellular interactions and transfection out-
comes.1147

Several reports describe formulations that exhibited efficient
transfection despite low charge densities and sometimes net
negative zeta potential values, questioning the validity of the
overly simplistic “positive surface potential” heuristic. Enhanc-
ing hydrophobic interactions between nucleic acids and
polymers through the incorporation of lipophilic functional
groups seems to be a common design strategy to increase the
effective charge density.492 Incorporation of fluoroalkyl
groups101,788 resulted in effective DNA condensation proper-
ties at N/P ratios as low as 1, and micellization through the
formation of hydrophobic core599,644,645 has generally been
able to prolong colloidal stability even in high ionic strength
environments, unlike electrostatically assembled polyplexes.
Imparting hydrophobic modifications to the polymer back-
bone,634,1148,1149 end groups, or pendant chains267,1150 has
yielded polyplexes with extremely low charge densities, thereby
resolving the toxicity-efficiency trade-off. Architectural tailoring
that results in multivalent topologies such as brushes can also

eliminate the need to employ high charge densities and N/P
ratios to engineer efficient polymeric vectors.1151

While hydrophilic motifs such as PEG and zwitterionic
functionalities are frequently incorporated to prolong circu-
lation time and provide stealth properties, they inevitably lead
to screening of positive charges,1152 possibly preventing
electrostatically mediated non-specific endocytosis. Unlike
neutral and negatively charged polyplexes, positively charged
polyplexes are prone to the formation of a protein corona,
which marks them out as targets for immune clearance. For
highly specific cellular delivery, a highly positive surface
potential can be detrimental since the protein corona may
interfere with biorecognition processes driving targeted cellular
uptake. Further, for intra-dermal and intro-muscular delivery
routes, which are relevant to DNA vaccine delivery, cationic
polyplexes tend to get sequestered or trapped by oppositely
charged extracellular proteins instead of activating T-cells.1152

As described previously, several groups have engineered pH-
responsive polyplexes that dynamically “shed” their hydrophilic
stealth layer in tumoral environments where the extracellular
pH is lower, thereby “unmasking” the positive charge and
allowing polyplexes to enter tumor cells.1153−1156 Considerable
synthetic ingenuity is involved in ensuring pH-dictated
targeting of distinct cellular phenotypes (healthy vs cancerous).
These systems must be carefully engineered to a narrow pH
range, since the pH ranges from 7.4 in normal physiological
environments to values ranging between 6.5 and 7.2 wherever
tumoral acidosis is present.749 Additional strategies to reduce
excess surface charge include the deliberate inclusion of
polyanions to form ternary complexes and the decationization

Figure 39. Hennink et al. reported the synthesis of cross-linkable and decationizable PHDP-PEG polymeric vectors. Decationized polymer
displayed improved biodistribution when compared to their cationic counterpart during in vivo experiments with systemic administration.
Reprinted with permissions from refs 1157 and 1159. Copyright 2013 and 2014 Elsevier (respectively).
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and cross-linking of polyplexes following electrostatically
mediated DNA condensation.1157

In the face of ambiguous experimental studies, simulation
and molecular modeling studies can help us arrive at a clear
understanding of the role of charge density on nucleic acid
compaction and release, interactions with serum proteins, cell
membrane, and endosomal vesicles. Researchers also need to
deploy a battery of characterization techniques to understand
the chemical heterogeneity of polyplex surfaces in biological
media and measuring charge distributions.1127

5.3.1. Decationized Polyplexes. Polyplexes with a net
positive charge tend to complex nucleic acids effectively and
deliver them to cells in vitro with high efficiencies, and yet they
frequently underperform when used for in vivo applica-
tions.1158 Depending on their physicochemical characteristics,
many polyplexes with a positive charge display undesired
biodistribution, high toxicity, and poor serum stability and may
exhibit the inability to release the nucleic acid intracellularly. In
this section we summarize a synthetic approach that allows for
initial DNA complexation through positively charged polymers
but subsequently neutralizes this positive charge through the
incorporation of degradable linkages and the eventual loss of
ionizable functional groups. By rendering the polyplexes
neutral after DNA compaction, the drawbacks of a net positive
charge (Figure 39) can be circumvented while ensuring
payload protection.
In 2013 Hennink et al.1157 reported a synthetic approach to

prepare neutral polyplexes, by cleaving the positive pendant
groups of the polycation used to complex pDNA after polyplex
formation and crosslinking. This process results in the
formation of either neutral polyplexes or polyplexes with
slightly negative charge densities. For this goal, the authors
employed N-[2-(2-pyridyldithio)]ethyl methacrylamide
(PDTEMA) to synthesize a PEG-b-P((HPMA-DMAE)-co-
P(PDTEMA)) terpolymer polycation. The HPMA-DMAE
(carbonic acid 2-dimethylamino-ethyl ester 1-methyl-2-(2-
methacryloylamino)-ethyl ester) repeating units contain
tertiary amines (used for electrostatic complexation of DNA)
linked to the polymer backbone via a carbonate ester group
suitable for cleaving via hydrolysis. The PDTEMA repeat units
include pyridyldithio units that undergo efficient disulfide
exchange under mild conditions, providing a mechanism for
crosslinking the polyplexes prior to the decationization process.
After decationization the polyplexes are stable in HEPES-

buffered saline, and no release of DNA was observed in gel
electrophoresis experiments. Exposing the decationized poly-
plexes to 1,4-dithiothreitol, a thiol reagent used to simulate the
reductive intracellular environment, causes DNA release, which
was not observed with the cationic polyplexes. The
decationized polyplexes show more than 50-fold lower cell
uptake into HeLa cells when compared to the cationic
counterparts as well as to ExGen-500, a linear PEI control.
The low non-specific cell uptake of the decationized polyplexes
provided an opportunity to combine the stealth properties of
these polyplexes with targeting strategies to achieve cell-
specific uptake. This concept was demonstrated by introducing
folate targeting moieties into the decationized polyplexes by
linking folic acid to the PEG macroinitiator prior to
polymerization to display it on the polymer end groups.1160

Folate-containing decationized polyplexes displayed a higher
cellular uptake (three- to fourfold higher) in vitro in OVCAR-3
and HeLa cells, two cell lines that overexpress folate receptors,
when compared to polyplexes that lack the folate targeting. It

was also found that this trend in cell uptake was reversed in
A549 cells, a folate receptor negative cell line. The folate-
containing PEG-b-P(HPMA-DMAE)-co-P(PDTEMA) terpol-
ymer was also optimized to form stable decationized
polyplexes with another payload type, siRNA.1161 Optimized
polyplexes were developed through tailoring of the molar ratio
of the PDTEMA crosslinkable units in the statistical cationic
block as well as the chemistry of the dithiol crosslinker. Even at
higher PDTEMA contents the siRNA polyplexes remain
degradable in the presence of extra 1,4-dithiothreitol after
decationization. Moreover, folate-containing decationized
siRNA polyplexes displayed gene knockdown, even in the
presence of serum, in Skov3-luc cells, a cell line where folate
receptors are overexpressed. In vivo1159 studies in zebrafish
models resulted in lower toxicity and teratogenicity when
compared to cationic polyplexes. Fluorescent labeling of the
decationized polyplexes revealed superior colloidal stability in
plasma, longer circulation times, and higher tumor accumu-
lation than their cationic counterparts.
Overall, decationization is a polymer design principle that

could be strategically incorporated in therapeutic delivery
vehicles, to prevent non-specific uptake and encourage specific
cellular targeting.

5.4. Mechanical Properties

Cells are extremely sensitive to microenvironmental cues,
particularly mechanical properties such as rigidity, elasticity,
and compressibility. This is true of both cells cultured in lab
settings as well as those in their native physiological niches.
Mechanical cues from the environment are transduced into
biochemical signals that have cascading effects on cell
adhesion, migration, and differentiation. Therefore, mechanical
properties of the cell culture substrate have long been a critical
focus of the tissue engineering community but are severely
under-investigated in the context of nonviral gene delivery.1162

Mooney and coworkers reported that cell proliferation and
apoptosis were regulated by the elastic modulus of the culture
substrate, with stiffer substrates promoting both polyplex
dissociation as well as transgene expression.1163 However,
these early studies were performed in two-dimensional (2D)
cell culture formats, which do not accurately recapitulate the
physiological environment. Segura and coworkers employed
extracellular matrix-mimetic 3D hydrogels based on hyaluronic
acid to study the interplay between the adhesive ligand
presentation and elastic modulus.1164 They tested hydrogels
varying in compliance from soft to stiff and concluded that
transgene expression can be modulated through mechanical
manipulation of cell culture scaffolds. In contrast to earlier
studies that favored high stiffness, they concluded that
intermediate values of elastic modulus were optimal for
maximizing transfection efficiency.1165 This discrepancy is
not unexpected since the regulation of endocytotic pathways
by substrate mechanics was found to be a complex function of
cell type, properties of the nanomaterial tested, and the time
points chosen for measurements.1166 Indeed, a follow-up
study1167 by Mooney’s research group found that, unlike with
DNA payloads, siRNA delivery remained unaffected by
changes in substrate modulus.
Other studies compared 2D and 3D cell cultures during

polyplex-mediated gene delivery and concluded that, while
endocytic pathways differed significantly, cytoskeletal dynamics
and molecular signals driving high transfection were quite
similar.1168 Apart from engineering hydrogels to match the
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stiffness of different tissue types (e.g., bone (>109 Pa) or
muscle (103 to 104 Pa)), the scaffold architecture and porosity
can also be modified to enhance cell spreading, thereby
promoting transfection.1169 Instead of employing polyplexes
formulated from commercial PEI-based reagents Yang et al.
identified a biodegradable PBAE through systematic synthesis
and screening and tested hydrogel scaffolds varying in moduli
from 2 to 175 kPa.1170 Hydrogels with moderate degrees of
stiffness (28 kPa) demonstrated the best transfection perform-
ance when employed in concert with the polymer lead
structure. This study suggests that a mechanical modulation of
cell culture platforms must be accompanied by careful
optimization of synthetic vector properties through polymer
chemistry approaches. In general, the gap between tissue
engineering platforms such as PEG and hyaluronic acid and
polymer synthetic tools must be bridged by a co-development
of the cellular microenvironment as well as the delivery vehicle
to exploit synergies. Similarly, mechanoresponsive polyplexes
can be engineered to sense mechanical contrasts between
healthy tissue and diseased tissues and release their nucleic
acids upon application of a mechanical trigger in vivo. These
“smart” polyplexes will be enormously useful to induce the
production of therapeutic proteins or growth factors in
conditions such as atherosclerosis, where healthy arteries are
supple and diseased arteries are stiff.1018

Several avenues of research exist to combine particle cores of
varying stiffness, using a vast palette of particle engineering
tools at our disposal and subsequently incorporating
polycationic surface chemistries via surface-initiated polymer-
ization. Orthogonal control over particle mechanics and
chemical functionality would be a powerful step forward in
understanding the interwoven effects of stiffness and chemi-
cally driven interactions between cells, nucleic acids, and
vectors.
Investigating the roles played by physical design parameters

such as size, shape, charge, and mechanical stimulation is very
important to progress in polymer-mediated nucleic acid
delivery. Although these parameters have been shown to
modulate organ distribution, membrane interactions, and
cellular uptake, a systematic exploration of the physical design
space is lacking. Polymeric gene delivery must exploit advances
in particle fabrication techniques to control physical properties
and improve delivery outcomes to exploit the full tunable
parameter space in this area.

5.5. Physicochemical Characterization of Polyplexes and
Their Formation

Since physicochemical characteristics of polyplex formulations
such as size, shape, and surface charge are influential in
determining the fate of polymeric gene delivery vehicles,
characterization techniques used to quantify these properties
assume a vital role in polymer development. In addition, we
note the importance of the molecular organization of polyplex
assemblies, particularly polyplex composition, quantification of
unbound polymers and nucleic acids, binding affinities, binding
configurations, nucleic acid helicities within assemblies, and
other structural descriptors. In this sub-section, we draw
attention to several physical and chemical analytical tools:
NMR spectroscopy, isothermal calorimetry (ITC), surface
plasmon resonance (SPR), Fourier-transformed infrared spec-
troscopy (FTIR), X-ray photoelectron spectroscopy (XPS),
DLS, static light scattering (SLS), small-angle X-ray scattering
(SAXS), small-angle neutron scattering (SANS), TEM,

turbidimetric titration, electrophoretic light scattering (ELS),
circular dichroism spectroscopy (CD), ultracentrifugation
(UCF), fluorescence correlation spectroscopy (FCS), and
atomic force microscopy (AFM).
In Table 2 we briefly describe how these techniques improve

our understanding of the solution properties of polymers and
polyplexes, the thermodynamics of nucleic acid-polymer
binding, and the molecular understanding of polyplex
architectures. Some of these techniques (such as DLS, NMR,
and zeta potential measurements) have been developed as
turnkey platforms that are inexpensive, facile, and highly
accessible to non-experts. On the other hand, some other
techniques (such as SAXS) require considerable expertise
during data acquisition and interpretation. Despite the
analytical challenges involved, we posit that the mechanistic
insights provided by these powerful methods are irreplaceable
in identifying and understanding the intermolecular forces
implicated in polyplex formation. We note that a few of these
methods (such as SANS and cryoTEM) require dedicated
infrastructure and deep analytical expertise, which emphasizes
the importance of close collaborations between polymer
chemists, characterization facilities, and biophysics experts.
The development of cutting-edge physicochemical character-
ization tools provides fundamental insights on polymer-nucleic
acid interactions, the uniformity and reproducibility in
formulation, and ultimately provides mechanistic understand-
ing that is essential for clinical translation.

6. EXPERIMENTAL CHALLENGES ASSOCIATED WITH
POLYPLEX FORMULATION: SOLUTION
PARAMETERS AND TRANSPORT LIMITATIONS

Like many interfacial phenomena in nanoscience, polyplex
formation is shaped by the competition between thermody-
namics and kinetics. While thermodynamic limits tend to favor
highly aggregated and hydrophobic equilibrium structures,
researchers circumvent these challenges by kinetically trapping
polyplexes in potential metastable non-equilibrium structures
with attractive properties such as narrow size distributions.
Kinetic trapping exploits the fact that, even though initial
interactions between nucleic acid and polymers are extremely
rapid, occurring in less than 50 ms, the subsequent
rearrangement of polyplexes and the eventual aggregation are
much slower processes, taking place over a time scale of hours.
While a thorough theoretical treatment of polyplex formation
physics is outside the scope of this Account, we emphasize that
electrostatic interactions are not the sole intermolecular forces
driving polyplex formation. When polyplexes are formed, this
process is typically accompanied by the release of counterions,
the loss of the hydration layer bound to the phosphodiester
backbone, and hydrophobic aggregation as well as the
formation of hydrogen bonds.
Recognizing that polyplex properties are impacted by the

manner in which the nucleic acids and their polymeric binders
come into contact with one another, the primary goal during
polyplex assembly is to ensure predictable and reproducible
experimental conditions that promote a consistent production
of polyplexes of the desired sizes, morphologies, and
compositions. While polymer structure and composition have
been exhaustively examined, the manipulation of polyplex
properties through systematic optimization of assembly
conditions is an under-investigated and sometimes-overlooked
approach to improving the biological outcomes of polymeric
gene delivery. In this section, we review (1) traditional
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methods to modulate polyplex properties via the optimization
of formulation parameters such as solvent environment and N/
P ratios, (2) hydrodynamic methods that overcome transport
limitations by achieving rapid and controllable mixing of
polymer and payload streams, and (3) the encapsulation of
polyplexes within polymeric particles and fibers via emulsion
methods, electrospinning, and electrospraying.

6.1. Exploring the Roles of Formulation Parameters during
Polyplex Assembly

Several research groups have tried to remediate the intrinsic
lack of reproducibility and standardization associated with the
polyplex assembly process by understanding and controlling
the underlying formulation parameters. Through a stepwise
exhaustive exploration of the vast experimental space within
polyplex assembly, Candiani and coworkers identified the best-
performing complexation conditions for four commonly
employed polycationic vectors, namely, PEI, branched PEI,
PLL, and PAMAM dendrimers.1255 They discovered that
optimal limits for experimental factors such as plasmid dose,
incubation time after polyplex formation, polyplex dilution,
polymer molecular weight, the N/P ratio (the ratio of ionizable
nitrogen groups to phosphate groups within nucleic acids),
buffer composition, sequence of addition, and volume ratios
had strong effects on both the transfection efficiency as well as
the cytotoxicity. Importantly, their study suggests that each of
these formulation parameters had to be separately optimized
for different polymeric reagents, underlining the high
variability observed in polyplex assembly conditions across
different studies. Even though this study was extensive, they
focused on optimizing one variable at a time, while keeping
other variables constant, an experimental design strategy that is
tedious, uneconomical, and inadequate in capturing strong
second-order interactions between two or more experimental
factors. In contrast, studies that employ a statistical design of
experiment methodologies1256−1258 to optimize formulation
parameters tend to produce more clear-cut conclusions, since
multiple experimental factors are varied simultaneously to
discover hidden interactions.
To develop a robust protocol for formulating polyplex

particles from PBAEs, Green and coworkers investigated the
roles of buffer composition, pH, polymer storage conditions,
and polyplex mixing in detail. Surprisingly, they discovered that
mixing volume ratios between polymer solutions and payloads
had no impact, while the polyplex incubation time post-mixing
proved to be consequential, with both short and long
incubation times proving detrimental to transfection effi-
cacy.1260 The incubation time is a particularly challenging
experimental factor to optimize since it has ramifications for
polymer degradation (and loss of delivery efficacy for
degradable polymers) as well as polyplex size distributions.
Wide discrepancies have been observed while ascertaining
whether the sequence of addition (e.g., polymer or nucleic acid
added first) is of significance. The order of formulation steps
has been shown to impact polyplex formation, which has been
described in detail by Kwon and coworkers;1259 they reported
the formation of several smaller polyplexes (60 nm) when
plasmid DNA or siRNA was added to PEI. When the reverse
sequence was employed, a smaller number of aggregated
polyplexes (200 nm) was formed instead, resulting in both an
improved transgene expression and a higher cytotoxicity
(Figure 40). Another study1261 compared dropwise addition
of polymer reagents and vigorous pipette mixing andT
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concluded that the former resulted in larger polyplexes (∼400
nm for dropwise addition as opposed to ∼150 nm for mixing),
which enhanced transfection in serum-free media through
gravitational settling. In serum-supplemented transfection
media, however, these size differences were completely
neutralized by severe polyplex aggregation in both samples.
The polyplex stability and polymer-nucleic acid binding

efficacy are both highly sensitive to environmental pH1262 as
well as ionic strength and identity.1111 To ensure reproduci-
bility, most groups choose to formulate polyplexes in standard
buffers such as HEPES and PBS, instead of water, although
divalent cations seem to improve the delivery efficiency.1263

Lowering the pH during a polyplex assembly promotes strong
binding between cationic polymers (charged groups are
generally below their pKa increasing protonation) and their
payloads,1257,1258 whereas polyplexes are also more prone to
aggregation in high-ionic-strength buffers due to charge
screening.1264 This suggests that systematic investigations of
ionic environment must be performed every time a novel
polymeric delivery system is developed, since conclusions
cannot be generalized from one experimental condition to
another.

6.2. Ternary Complexes

Coatings prepared from biopolymers such as heparin
sulfate,302,1265 hyaluronic acid,1263,1266 gelatin,1267 and basic
fibroblast growth factor1268 have been shown to enhance the
biological performance of polyplex formulations in diverse
contexts. For instance, in applications requiring the controlled
release of drugs or growth factors, Hammond and coworkers
were among the first to demonstrate the benefits of
incorporating biological derived polyanions such as heparin
sulfate, chondroitin sulfate, and basic fibroblast growth factor
to improve the performance of polyelectrolyte com-

plexes.1269−1271 Reineke and coworkers demonstrated that
membrane association, cellular internalization, and transfection
efficiency could be significantly improved manyfold by
heparin-coating trehalose-based polyplexes.302 The biological
enhancements effected by this glycosaminoglycan (GAG)
additive was not only found to be dose-dependent but also
composition-dependent. While polytrehalose vehicles exhibited
improvements in transfection efficiency, transfection was
completely suppressed in PEI-based vectors upon the addition
of heparan sulfate. Combining glycopolycationic vehicles with
heparan sulfate seems to be an effective approach to
transfecting challenging cell types such as primary fibroblasts
and pluripotent stem cells. Hyaluronic acid (HA) is another
GAG additive that has been widely used in cancer therapy
owing to the overexpression of HA-binding CD44 receptors by
tumor-forming cells.1272 An HA coating seems to impart
colloidal stability in biological media in a molecular weight-
dependent manner,1273 modify cell uptake kinetics,1268 and
reduce toxicity.1274 Similarly, gelatin-coated polyplexes were
found to be stable for up to 24 h in serum-rich media while still
retaining their transfection efficiency, a result that contrasts
with traditional PEGylation approaches. This study suggests
that gelatin, which is ubiquitously used in the food and
pharmaceuticals industries, could be a plausible steric
stabilization alternative to resolve the PEGylation dilemma.
Poly(glutamic acid) (PGA) peptide coatings were found to
alter biodistribution profiles and impart tissue specificity to
polyplexes depending on the quantity of PGA used.1275 At low
concentrations, large micron-sized particles were formed and
mostly localized within the liver, while higher PGA
concentrations imparted serum stability and reduced polyplex
sizes, promoting spleen and bone marrow targeting. These
approaches demonstrate the potential of applying biopolymer
coatings to polyplexes through physisorption to modulate

Figure 40. Effect of sequence of addition on polyplex size and composition. Addition of PEI to siRNA results in aggregation, while the reverse
order leads to uniform, well-dispersed populations. Reprinted with permission from ref 1259. Copyright 2015 Royal Society of Chemistry.
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cellular internalization, receptor targeting, and achieve stealth
properties. However, the coating process must be engineered
to achieve precise surface densities and reproducible results so
that fully defined polyplex nanoparticles are produced to fulfill
diverse therapeutic niches.

6.3. The Importance of Formulation Ratio or Charge Ratio
(N/P)

The dilemma confronting polymeric gene delivery is that
efficient intracellular delivery is frequently accompanied by
high levels of cytotoxicity.1276 Apart from molecular weight,
polymer architecture and composition, the N/P ratio, or the
charge ratio between nitrogen atoms in polymers to
phosphates in nucleic acid cargoes, is the single most
influential experimental variable used to resolve the efficacy-
toxicity conundrum. It is generally agreed that excess polymer
is required for the formation of colloidally stable polyplexes
owing to the net positive surface charge resulting from the
surfeit of cationic polymers.1277 However, the implications of
using excess polymer are both complex and consequential due
to the existence of intertwined relationships between polyplex
formulation ratios and downstream biological events. On the
one hand, adverse effects range from serum protein-induced
aggregation and altered biodistribution profiles,116 possibly
provoked by enhanced interactions between polymers and
extracellular proteins,1247 and cellular membrane disruption
caused by the induction of nanoscale pores and membrane
leakage.1278 On the other hand, excess polymer and high N/P
ratios have also been shown to promote endosomal
escape,215,1279 disrupt the nuclear envelope,137 ensure payload
protection from degradation, and prevent aggregation.
Typically, the role of charge ratio on key biological responses
such as transfection efficiency, toxicity, hemocompatibility, and
payload binding has been studied in isolation. Most of these
studies have noted a strong N/P dependence of both cell
viability and transfection efficiency and generated trade-off
curves at the intersection of which the optimal N/P ratio can
be identified to maximize viability in an efficacy-constrained
manner.1280 However, we believe that the best approach is to
co-investigate the role of the N/P ratio in tandem with other
attributes such as PEGylation,844,1281 hydrophobicity,599 and
molecular weight.849 We also draw attention to the creative use
of physical characterization tools (Section 5.5) such as whole
cell patch clamp measurements of membrane currents,1282

scattering techniques such as SAXS and SANS,1240 AFM, and
NMR222,223,1171 as well as polyplex purification approaches
such as ultrafiltration,1283 asymmetric fractional flow fractio-
nation, and Taylor dispersion.1097 The above tools allow us to
thoroughly probe the binding state of polymers within
polyplexes, visualize the dynamic equilibrium between bound
and unbound states, and understand the role played by free
polymers during transfection. These studies will also help
researchers to answer several pressing questions in this field. Is
the membrane porosity caused by free polymers merely an
undesirable side effect or an indispensable cellular entry
pathway? Are excess polymers essential to prevent the
development of late endolysosomal vesicles and facilitate
rapid intracellular payload release or do they merely activate
cellular defense mechanisms such as cytosolic nucleases1282

that depress transfection? It is difficult to draw conclusions on
the effects of N/P ratios, since we cannot compare across
divergent experimental setups, polymer compositions and
architectures. We speculate that the question of whether the

“burden of transfection” is mostly borne by free polymers or
polyplex-bound polymers must be explored on a case-by-case
basis, making the optimization of the N/P ratio a vital
development exercise. We also note that the decationization of
polyplexes (Section 5.3.1)1161 and the development of
polymeric vehicles that do not rely on electrostatic interactions
for polyplex assembly will minimize the need to carefully
optimize the N/P ratio.

6.4. Directing Polyplex Assembly through Microfluidics

Microfluidic systems are miniaturized flow chambers wherein
at least one dimension of the flow channel is less than a
millimeter. Because of these small dimensions, it becomes
easier to achieve a highly predictable flow regime termed
laminar flow, defined by a region where the Reynolds number
is less than 2100. Low Reynolds number flows have special
properties, since complexation processes behave quite differ-
ently at such small dimensions compared to bulk mixing
conditions. Microfluidic tools, therefore, have been harnessed
to control the mixing and assembly conditions during polyplex
formulation, offering a powerful way to manipulate the physical
properties of polyplexes, notably size distribution and
composition. Polyplex preparation “on a chip” was initially
explored as a means of improving the properties of commercial
PEI-based reagents.1284 Despite the extensive optimization of
addition sequence, concentrations, and mixing speeds, it was
recognized that standard pipette mixing and vortexing
procedures were unable to prevent polyplex aggregation and
the formation of heterogeneous populations.1285 In contrast to
bulk mixing, polyplexes assembled in a microfluidic device not
only had smaller diameters and narrower dispersites but also
retained payload integrity and compaction, resulted in superior
transfection efficiency, and lowered toxicity.1284 When the
assembly process was confined within picoliter-sized droplets
through emulsion formation,1286 the quantity of cationic
polymer and plasmid within each polyplex can be tailored
precisely while droplet dispersion within a buffer can ensure
that aggregation does not occur.1287 This microfluidics-assisted
confinement approach was able to produce homogeneous
polyplex populations that were resistant to aggregation and
resulted in lowered cytotoxicity compared to standard mixing
procedures (Figure 41). Further improvements to the

Figure 41. Microfluidics-assisted confinement was applied to generate
picoliter droplets, thereby controlling polyplex size distribution and
composition through confinement. Reprinted with permission from
ref 1287. Copyright 2011 American Chemical Society.
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microfluidics-assisted confinement approach were effected by
hydrodynamic focusing of flows at the intersections between
multiple microchannels.1288 This modification shrinks the
diffusion length scales, allowing for faster mixing and more
uniform polyplex particles. 2D hydrodynamic focusing can be
restricted to a single plane,1289 but greater confinement and
improved mixing profiles can be achieved using 3D hydro-
dynamic focusing.1290,1291 The integration of a dielectropho-
retic separation step within these droplet microfluidic tools can
enable an in situ screening to sort polyplexes based on size
specifications, improving polyplex properties even further.1292

While hydrodynamic and droplet-based methods are subject to
diffusion limitations and rely on passive mixing, acoustic waves
can be used to accelerate mass transport, thereby increasing
the mixing efficiency by reducing the length scale over which
diffusion occurs.1293 These “acoustofluidic” methods1294,1295

have been shown to produce even narrower polyplex sizes
compared to traditional microfluidic tools.1290 Overall, we
conclude that batch mixing techniques such as pipette mixing
for the most part do not ensure reproducible results with many
systems, which is important for scale-up, clinical testing, or
animal studies; indeed, continuous-flow approaches and
microfluidic platforms for polyplex formation may resolve
this issue.1296−1298

Microfluidic technologies can be a valuable tool to screen a
multitude of polymer designs and formulation variables by
integrating cell culture, transfection, and microscopy modules
within the same microfluidic chip.1299,1300 A microfluidics-
based high-throughput screening strategy minimizes the
quantity of biological reagents consumed, ensures experimental
consistency, and enables a rapid discovery of hit polymers for
diverse payloads and therapeutic applications (Figure 42).

Since small volumes (<10 μL) can be reliably and rapidly
mixed within these devices, numerous combinations of
polymer and payload concentration mixing conditions, N/P
ratios, and flow rates can be screened rapidly,1301 if these high-
throughput microfluidic platforms are integrated with in-line
tools to monitor the evolution of polyplex sizes as well as the
binding interactions between the polymers and nucleic
acids.1302

Powerful as microfluidic tools may be, they still require
access to dedicated cleanroom facilities to fabricate intricate
microdevices based on polydimethylsiloxane as well as

specialized know-how. Further, to achieve scale-up for clinical
translation, multiple units must be operated in parallel to
produce the requisite quantities of polyplexes. Millifluidic
devices such as confined impinging jet mixers can be fabricated
more easily using standard machining tools. Unlike micro-
fluidic devices that are based on laminar flow, confined
impinging jet mixers operate in the turbulent flow regime,
where the characteristic mixing time can be reduced to tens of
milliseconds.1303 This time scale compares well to the 50 ms
time span that was observed for spontaneous electrostatically
driven assembly to occur between cationic polymers and
nucleic acid payloads. Rapid turbulent mixing narrows the
temporal window for polyplex aggregation, creating well-
defined polyplex formulations characterized by tailored nucleic
acid loadings, tunable diameters, and narrow dispersities.
Drawing inspiration from the pioneering work of Johnson &
Prudhomme, who first described the role played by turbulent
mixing during flash nanoprecipitation to achieve narrow crystal
size distributions for pharmaceutical manufacturing, Mao et al.
used confined impinging jet mixers to engineer polyplexes with
improved physical properties and transfection.1304

6.5. Kinetic Control of Polyplex Assembly through
Turbulent Mixing

The term “flash nanocomplexation” was coined to describe this
assembly process wherein a fluid stream comprising the
cationic polymer solution comprising linear PEI would meet an
opposing fluid stream containing plasmid DNA at extremely
high velocities to create highly controlled assemblies through a
confined impingement of these jets. By tuning the channel
diameters, the volume of the mixing chamber, concentrations,
and flow rates, different mixing times can be achieved, thereby
varying the kinetic regimes for a polyplex assembly.1306 The
most recent report of a confined impinging jet mixer-mediated
polyplex formation1305 illustrated how careful modulation of
the characteristic mixing time could be used to obtain
polyplexes with any desired number of plasmids per nano-
particle (between 1 and 21) as well as diameters as low as 35
nm (Figure 43). Kinetic control over polyplex mixing served to
reduce the mixing time relative to the characteristic assembly
time and yielded polyplexes with altered biodistribution
profiles and minimized the formation of necrotic tissue in
the liver during in vivo delivery. In addition to demonstrating
in vivo efficacy, this study thoroughly characterized polyplex
size and composition through DLS and SLS, underlining the
intimate relationship between polyplex physical properties and
biological behavior. A potential risk of this confined impinging
jet mixer-mediated flash nanocomplexation is that only robust
payloads like pDNA can be used, which do not undergo chain
breakage or scission during turbulent mixing. Flash nano-
complexation is yet to be explored for RNA and protein-based
payloads, but it is expected that subtle modifications to the
flow geometry and a slight reduction of flow rate could prevent
payload damage while retaining a turbulent flow and high
energy dissipation rates. Overall, confined impinging jet mixers
are highly promising tools that can be explored to alleviate
polyplex aggregation and modulate payload dosing within
polyplexes.

6.6. Electrohydrodynamic Processing of Polyplexes

The encapsulation of polyplexes within polymeric nanofibers
via electrospinning1307 is a powerful way to prolong release
kinetics, which is particularly critical while delivering nucleic
acids for wound healing and tissue regeneration.1308 Electro-

Figure 42. Formation of lipoplexes for high-throughput screening
enabled by microfluidic formulation. Reprinted with permission from
ref 1301. Copyright 2012 American Chemical Society.
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spun polymer mats are applied as extracellular matrix (ECM)
mimics due to their high surface area-to-volume ratio,
conformal adherence to cells, porous architecture, and tunable
mechanical properties. In contrast to substrate-mediated gene
delivery of naked DNA from the outer surface of electrospun
fibers, several groups have developed inventive methods to
incorporate DNA within the core of the fibers, where they are
likely to be more stabilized. By condensing nucleic acids
payloads with chitosan1309,1310 or PEI-based carriers1311,1312

prior to embedding these polyplexes within fibers via
electrospinning, it is possible to prolong release lifetimes of
polyplexes to up to a month instead of obtaining burst release
within a few hours. However, some groups have also reported
prolonged release profiles and efficient gene silencing mediated
by naked siRNA embedded within nanofibers, despite the lack
of a complexation pre-step,1313,1314 suggesting that different
techniques may need to be adopted for diverse payload types.
An interesting formulation approach is the physical entrapment
of pDNA/PEI polyplexes within degradable PLGA micro-
spheres via emulsion techniques.1208 This method can be
adapted to electro-hydrodynamic processing through a coaxial
electrospraying of pDNA within a sheath of PEI, resulting in
the preservation of pDNA integrity without sustaining any
damage due to high electric fields.1315 Although the N/P ratio
could be modulated by tuning flow rates during electro-
spraying, polyplex size distribution was found to be highly

variable across different processing conditions. Though
electrohydrodynamic polyplex formation outperformed bulk
mixing, it needs to be further optimized to expand the
application to other polymeric vehicles beyond PEI. A
particularly interesting capability afforded by electrohydrody-
namic processing of polyplexes is the compartmentalization of
imaging modalities and pH-sensing functionalities within
distinct hemispheres of bicompartmental microparticles.1315

While the hydrophobic PLGA compartment facilitated
incorporation of fluorescent molecules for microparticle
visualization, the cross-linked PEI compartment induced
endosmotic swelling and bursting, promoting siRNA release
and gene silencing. The authors argued that synergistic effects
that result from compartmentalization cannot arise from using
mixtures of individual particles. While electro-hydrodynamic
formulation of polyplexes is a creative way to control
morphology, composition, and internal architecture, further
research is essential to obtain narrower formulation size
distributions and fine-tune release kinetics.
Overall, we have presented an overview of diverse

approaches to polyplex formulation that go beyond manual
methods and exploration of solution parameters such as pH,
ionic strength, or polymer dose. We expect that the application
of microfluidic, electro-hydrodynamic, and millifluidic methods
in gene delivery will continue to grow, accessing interesting

Figure 43. Mao and coworkers used confined impingement jet mixers to engineer uniform polyplex populations via flash nanocomplexation.
Turbulent mixing was exploited to reduce the characteristic time of mixing, preventing undesired aggregation. Reprinted with permission from ref
1305. Copyright 2019 American Chemical Society.
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material properties and enabling tight control over size
distribution and nucleic acid dosing.

7. ALTERNATIVE BIOMATERIAL PLATFORMS FOR
TRANSFECTION

In contrast to polymeric vehicles obtained via controlled
radical polymerization or post-polymerization modification,
some biomaterial platforms rely on polymer processing
methods rather than chemical synthesis to obtain desired
material properties. Examples include substrate-mediated gene
transfer from protein-coated planar substrates, hydrogel-
mediated gene transfer in 3D cell culture environments, and
core-shell nanoparticles where polycationic coronas are grafted
from inorganic nanoparticle templates. Although these atypical
biomaterial platforms lack chemical sophistication and do not
require complex chemical synthesis procedures, they are simple
yet powerful tools to probe physical design parameters in
polymer-mediated gene delivery.

7.1. Substrate-Mediated Transfection in 2D and 3D Cell
Culture Environments

Tissue engineering seeks to reprogram cellular behavior with
the goal of controlling proliferation, differentiation, migration,
or the induction of desired cellular phenotypes. Bioengineers
achieve these goals by impregnating tissue engineering
scaffolds with growth factors, trophic factors, and transcription
factors to manipulate cellular responses. However, engineering
sustained release of these protein-based cargoes is crippled by
the instability of these large and complex biomolecules, which
have half-lives as low as 2 min in physiological milieus.1316

Further, delivery strategies and processing conditions must be
individually optimized for each bioactive cargo, making
allowances for the size, charge, surface chemistry, and stability
of each protein. Despite advances in protein delivery, large
doses and repeated injections are a frequent necessity. To
counter the cost and stability constraints imposed by protein
delivery, genetic cargoes encoding for the desired protein or
protein fragment were explored as alternatives to protein
depots. Gene delivery presents several advantages over protein
delivery: its universality is attractive since delivery platforms
need not be redesigned for different DNA sequences, it lowers
costs, and does away with the need for repeated and large
doses, since transfected cells function as “biofactories”
secreting the protein or growth factor of interest in a sustained
fashion, maximizing its bioavailability. However, gene delivery
is associated with a significant time lag that can span several
days, which contrasts with the immediate availability of
bioactive cues guaranteed by protein delivery.
A common gene delivery approach employed by tissue

engineers is the immobilization of DNA to the substrate on
which cells are cultured, thereby placing the genetic cargo
within an immediate proximity of its cellular target (Figure
44). It has been argued that substrate-mediated gene delivery is
inherently biomimetic in its design, since both viral vectors as
well as endogenously produced growth factors exploit
interactions with the extracellular matrix to mediate cellular
internalization.1317 Cells growing on nucleic acid-immobilized
substrates can either endocytose the DNA directly or ensure
DNA release from the substrate by disrupting chemical or
physical associations between the nucleic acid and the
substrate. By engineering concomitant delivery of multiple
nucleic acid payloads or by co-delivering genes with proteins,

we can engineer complex tissue architectures where multiple
cell types are organized in a hierarchical fashion.1318

Polymeric biomaterials intended to deliver therapeutic
nucleic acids typically focus on optimization of material
properties with systemic routes such as intravenous, oral,
intradermal, and intramuscular administration in mind.
However, precise targeting of disease sites such as tumors or
specific tissue types is almost impossible with systemic delivery
approaches. The need to engineer targeting modalities can be
obviated by employing local delivery or substrate-mediated
delivery.1320 Substrate-mediated gene delivery platforms can
also be designed to mimic the extracellular matrix, wherein
cellular targets can infiltrate the matrix, eventually leading to
local cellular uptake of DNA embedded within the matrix.1321

Substrate-mediated gene delivery seeks to alleviate several
shortcomings associated with “bolus transfection”. First, the
local concentration of nucleic acids at the cell−polymer
interface is much higher for substrate-mediated delivery
compared to bolus methods, ensuring that transfection is not
bottlenecked by transport limitations, such as a slow diffusion
of polyplexes and diameter-dependent settling velocities,
ultimately minimizing serum-induced degradation en route to
cells and promoting opportunities for polyplex-cell contact.
Second, the high local concentrations achieved by substrate-
mediated methods eliminates the need to use high loadings of
nucleic acids as well as polymeric vectors, minimizing cost as
well as cellular toxicity. Finally, by sustaining a therapeutically-
relevant release rate of nucleic acids for prolonged durations,
substrate-mediated delivery can dramatically improve the
delivery efficiency by mediating repeated transfection events.
While synthetic vectors for gene delivery are typically evaluated
on standard 2D tissue culture polystyrene plates, cellular
responses to polyplexes in a 2D culture are not necessarily
predictive of in vivo outcomes. In general, 3D polymeric
scaffolds or matrices are considered to be more realistic models
that simulate the native physiological milieu of living tissues.
Moreover, cellular phenotypic expression varies dramatically
between 2D and 3D environments, and loss of key phenotypes
has been observed for cells cultured for long durations in 2D
cultures. In the context of gene delivery, “dimensionality” has

Figure 44. Substrate-mediated gene delivery from 2D substrates
wherein naked nucleic acids of polyplexes, either specifically or non-
specifically immobilized to the substrate, are transferred to adherent
cells. Mechanism of substrate-mediated gene delivery: (1) vector
release, (2) membrane association, (3) endocytosis, (4) early
endosome, (5) late endosome, (6) escape from endosome, (7)
nuclear translocation, (8) nuclear entry, (9) transcription into RNA,
(10) transport of RNA to cytoplasm, and (11) translation of RNA
into protein. Reprinted with permission from ref 1319. Copyright
2005 Materials Research Society.
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repeatedly been demonstrated to have profound effects on
endocytosis pathways, cytoskeletal dynamics, mechanisms of
gene transfer, and cellular signaling pathways. Nevertheless, 2D
studies have several advantages: simplicity, throughput, and
homogeneous access to nutrients in the cell culture media. In
this section, we will briefly summarize substrate-mediated gene
delivery approaches attempted in both 2D and 3D cell culture
environments and outline directions for future studies. The
reader is redirected to several review articles1317−1320,1322−1325

on this topic, where they will find a more biologically focused
discussion of substrate-mediated transfection. We will restrict
our focus to material design and synthetic considerations.
7.1.1. Substrate-Mediated Transfection in 2D Cell

Culture Environments. The surface immobilization of
nucleic acids is performed by depositing either naked DNA
or pre-complexed polyplexes or lipoplexes on tissue culture
polystyrene substrates that are pre-coated with gelatin,
chitosan, PLL, or poly(lactic-co-glycolic acid) (PLGA) that
promote both cell adhesion as well as DNA entrapment. While
embedding uncomplexed or naked DNA within coated cell
culture substrates is facile and allows for rapid payload
internalization, it requires high DNA loadings to facilitate
transfection. In contrast, preformed polyplexes or lipoplexes
offer better protection to DNA from serum nucleases and

mediate efficient transfection even at low nucleic acid doses. A
potential disadvantage of using synthetic materials to complex
DNA is that the vector properties can drastically alter the size
distribution and surface charge, and aggregation-prone
materials such as PEI could adversely affect transgene
expression. Another design parameter in substrate-mediated
gene delivery is the choice between specific and non-specific
immobilization approaches.1326 Specific approaches such as
avidin-functionalized substrates to bind to biotinylated
polyplexes, adamantane-cyclodextrin interactions,1327 self-
assembled monolayers,1325,1328−1331 covalent chemistries,1332

or antibody-antigen binding1333 offer greater control over the
transfection process since the immobilization density1326,1334

and nucleic acid dosing1335−1337 can be precisely tuned.
Moreover, immobilization approaches can employ cleavable
peptide sequences as covalent tethers such that polyplexes are
released from the substrate through cellular degradation
processes mediated by matrix metalloproteinase (MMP).1338

Substrates can be functionalized with an optimized mixture of
biochemical cues driving cellular adhesion and matrix, thereby
prolonging nucleic acid release and maximizing transgene
expression. A less elegant, albeit highly effective, approach to
nucleic acid immobilization is through non-specific inter-
actions such as electrostatic forces1339 or mere physical

Table 3. Summary of 2D Platforms for Substrate-Mediated Transfection

substrate
DNA complexation

agent summary refs

Tissue Culture Polystyrene Naked Chitosan and hyaluronic acid coatings employed to immobilize DNA 1350
Lipid coatings employed to immobilize DNA 1351

PEI Col I-coated surfaces employed to immobilize DNA 1346
Examined the effects of ECM coating composition and density on cytoskeletal dynamics. 1348

1347
1326

Lipoplexes Enhanced substrate-mediated lipofection through peptide incorporation 1352
PEI/Lipoplexes Compared recombinant and full-length fibronectin coatings 1344
Lipoplex/Polyplex Screened a library of ECM-mimetic substrates 1349

PLGA Fibronectin Guided neurite extension using NGF-patterns 1341
PEI Neurite extension using NGF-patterns 1341

Covalent binding of PEI polyplexes to PLGA through EDC/NHS 1332
Lipoplexes Investigated ECM coating composition to heal spinal injury 1340
Lipoplexes/PEI Effect of serum deposition on DNA loading and transfection 1334

Polydopamine Protamine Inducing rapid endothelialization of implanted vascular devices 1353
Naked Studied cell spreading, morphology and membrane perturbation induced by silicon nanowires 1354

Avidin/Neutravidin PLL Effect of polyplex immobilization density 1355
PLL/PEI 1336
Chitosan N/P ratio AND biotinylation degree regulated gene delivery 1356

Coculture models Lipoplexes/PEI Neuronal archιtecture controlled by engineering gradients of growth factors secreted by transfected
cells in a co-culture model

1357

Lipoplexes 1358
Chitosan Naked Reprogramming of human fibroblasts into neural crest stem-like cells 1359

Directed differentiation of HGFs along neural pathways 1360
SAM Lipoplexes Surface chemistry, hydrophobicity, charge density studied on SAM libraries 1329

PEI Effect of PEG incorporation on polyplex size distribution and stability. 1330
His-PEI Histidine-NTA linkages immobilize polyplexes on SAMS of Ni/Au 1331

Silicon-based nanosheets/
nanowires

Lipoplexes Silica network architecture used to modulate transfection outcomes 1361

PAMAM/Ad
+PEI/Cd

Specific binding of polyplexes on Silicon nanowires 1327

Steel/Titanium PEI Polymer brushes functionalized with adhesion ligands (RGD) 1362
Polyallylamine
bisphosphonate

Anti-DNA antibody Gene-eluting stents engineered using covalent immobilization 1333

Polyurethane Naked Impact of nanotopography on cellular motility and spreading 1363
Intestinal sub mucosal PEI Non-specific immobilization of polyplexes on biological substrates 1339
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entrapment within a polymeric matrix (PLGA is typically
used).1332,1340−1343 While the release kinetics cannot be
controlled, these substrate-mediated approaches are easy to
implement and facilitate a rapid release of DNA from the
substrate. Another effective non-specific approach is the use of
extracellular matrix coatings such as collagen, fibronectin, or
laminin on planar substrates. The groups of Pannier, Shea, and
Segura have devoted extensive efforts to studying the interplay
between the cellular microenvironment and transfection
mechanisms (Table 3). Shea and coworkers noted that
transgene expression could be amplified on serum-coated
substrates compared to uncoated ones and systematically
probed the role of protein density and identity on gene
delivery.1326,1334,1340,1344,1345 Segura and coworkers concluded
that fibronectin coatings promote polyplex internalization and
uptake by guiding polyplexes through a more favorable
clathrin-mediated endocytosis, in contrast to collagen coatings,
which tend to favor the less-effective caveolar routes.1346 They
have also probed the roles of RhoGTPases in modulating
substrate-mediated gene transfer to mesenchymal stem cells on
fibronectin-coated surfaces.1347 Mixtures of recombinant ECM
proteins were deployed to understand the effects or surface
chemistry on cell morphology, spreading, and integrin
expression and their downstream impacts on polyplex

internalization.1348 A recent study from Pannier and coworkers
extended this idea further to elegantly demonstrate the impact
of cellular microenvironment on substrate-mediated trans-
fection. Combinatorially-designed binary and ternary mixtures
of glycosaminoglycans such as heparin sulfate and adhesion
peptides such as RGD were deposited to generate a library of
20 ECM-mimetic cell culture substrates.1349 These combinato-
rially-generated substrates resulted in a 2- to 20-fold higher
transgene expression than homogeneous protein coatings. The
authors hypothesized that cell adhesion, spreading, and
polyplex internalization could be maximized by screening for
the most suitable ECM substrates within this library.
In addition to biologically-derived cell culture substrates,

graphene and graphene oxide substrates can either be
covalently or non-covalently modified with cationic polymers
such as PEI to immobilize DNA on its surface.1364,1365 These
graphene oxide-based platforms are highly promising to
modulate cell proliferation, differentiation, and survival
through the use of nanotopographical cues, spatial patterns,
and a dual release of drugs and nucleic acids.1366−1369

Microcontact printing of self-assembled monolayers can be
used to create microarrays of transfected cells,1370−1373

creating a high-throughput screening platform for probing
correlations between gene expression and cellular responses to

Table 4. Summary of 3D Platforms for Substrate-Mediated Transfection

scaffold material DNA complexation summary refs

PLGA Naked Platelet-derived growth factor delivered from porous PLGA for angiogenesis 1387
Vascular morphogenesis through delivery of Del-1 from injectable implant 1343
Spinal cord repair by delivering plasmids over extended durations 1388
Layered design of porous and non-porous PLGA scaffold 1388
Subcutaneous implantation of DNA-loaded scaffold 1389

PEI BMP-4 delivery to heal critical bone defect 1342
PEI/PAA/PDA/PLL Initial plasmid dose, choice of promoter and vector composition studied 1335
PLGA Probe effects of pore architecture on DNA stability and release kinetics 1337

Fibrin Naked Full thickness wounds healed by delivering EGF to keratinocytes 1390
Fibrin encapsulation did not enhance VEGF plasmid delivery 1391

Peptide lipoplexes Therapeutic angiogenesis through delivery of transcription factor HIF-1alpha 1392
Lipoplex Spatial control of transfection through fibrin microarrays 1383

Comparing cell encapsulation vs “seeding onto” approach 1375
Alginate PEI Hydrogel-mediated VEGF delivery outperformed bolus delivery 1393

Naked Role of RGD density and hydrogel stiffness during siRNA delivery 1167
Atellocollagen Naked Gene silencing for inhibiting tumoral growth 1394

Intramuscular gene delivery 1395
Chitosan Naked Peripheral nerve regeneration through BDNF delivery to MSCs 1396
Collagen Naked Platelet-derived growth factor to heal chronic wounds 1397

Inhibit collagen deposition through anti-sense delivery 1374
Lipoplex Dual delivery of VEGF and BMP-2 for healing critical bone defects 1398

Gelatin Naked Intramuscular delivery of FGF-4 for ischemia 1399
PEI Bone growth through dual delivery of bFGF and BMP-2 1400

Hyaluronic acid Naked, PEI Interactions between PEI and hyaluronic acid modulated transgene expression 1378
PEI Effect of polyplex diameter gene delivery 1345

RGD density and matrix stiffness evaluated conjointly 1165
Effect of pore architecture on vascularization 1376
Extended DNA release over 30 days mediated by multiple transfection events 1401

PEI/Lipoplex Caged nanoparticle encapsulation sued to prevent polyplex aggregation 1377
PEG PEI MMP-degradable peptides incorporated via Michael addition chemistry for MSC transfection 1379

Bioinstructive hydrogels created using RGD gradients to guide cell migration 1382
Electrospun mats functionalized with MMP-responsive peptides for diabetic wound healing 1382
Cellular infiltration is key to obtaining extended DNA release in MMP-responsive hydrogels 1380

Transfast Affinity peptides enhanced polyplex retention to improve transfection 1402
Lipoplexes Tuning RGD density to control cell migration to balance hydrogel degradation rates 1381
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environmental cues.1329 Further, microcontact printing and
similar patterning techniques are of use in tissue-engineering
applications such as neurite guidance, which require well-
defined patterns of gene expression promoting neural growth
factor secretion along delineated areas.1341,1358 Finally, 2D
platforms for substrate-mediated delivery can be valuable tools
to understand the impact of nanotopography and surface
chemistry on cellular responses such as integrin signaling,
cytoskeletal activation, cell migration, and adhesion, with the
ultimate goal of improving the “transfectability” of challenging
cell types through environmental modulation.1363

7.1.2. Substrate-Mediated Transfection in 3D Culture
Environments. The earliest attempts at a scaffold-mediated
transfection utilized simple polymer matrices such as PLGA or
poly(vinyl acetate), generally described as “gene activating
matrices”.1374 The release rate of nucleic acids could be tuned
by modifying the pore architecture of PLGA through
appropriate modifications to polymer processing conditions.
Although these were initial 3D model systems for matrix-
mediated gene delivery, PLGA-based systems provided
valuable insight on the mechanistic differences between
substrate-mediated and bolus delivery approaches. These
systems were also probed to evaluate whether specific nucleic
acid immobilization could affect improvements in delivery
efficiency, over the non-specific impregnation of PLGA with
DNA.
Among 3D cell culture substrates (Table 4), hydrogels are

more widely used than PLGA or other polymer matrices, since
the former combine a rich aqueous environment with a
structural support for cells to adhere to and proliferate, while
the latter provide structural support alone. By providing large
open spaces for cellular migration and infiltration, hydrogels
have recapitulated the extracellular matrix of native cellular
environments. Cells can either be seeded onto the hydrogel
surface, from where they can subsequently infiltrate the porous
matrix, or they can be encapsulated within the hydrogel by
mixing cellular suspensions with hydrogel precursors prior to
cross-linking.1375 The beauty of hydrogel formation is that
extremely mild chemical cross-linking procedures can be
implemented, minimizing damage to cellular processes. It has
been shown that the “seeding onto” approach is superior to
cellular encapsulation since cell migration and infiltration are
necessary to degrade the hydrogel matrix and release genetic
payloads for uptake. Similarly, polyplexes or lipoplexes can be
introduced into the hydrogel either through encapsulation or
through surface immobilization (through biotin-avidin inter-
actions,1345 electrostatic interactions, or covalent bonds). The
former approach was found to be ineffective even when the
hydrogel mesh size was much smaller than the polyplex, since
polyplex diffusion is hindered and the hydrogel must degrade
to release complexes.1376 Other challenges include the
optimization of hydrogel-vector interactions such that
polyplexes are retained long enough on hydrogels to sustain
prolonged DNA release for the duration of cell migration.
However, extremely strong interactions between polyplexes
and the matrix can hinder cellular uptake and DNA release.
Polyplex aggregation can also drastically alter transgene
expression profiles since smaller polyplexes tend to transfect
a larger number of cells during substrate-mediated transfection.
Segura and coworkers developed a “caged nanoencapsulation”
approach to prevent polyplex aggregation and enhance
transgene expression efficiency.1376 Balancing hydrogel degra-
dation rates to match the rate of cell migration is especially

tricky. Any attempt to tune degradation kinetics would
inevitably be accompanied by changes in hydrogel composi-
tion, adhesion ligand density crosslinking density, swelling
ratio, and mechanical properties, all of which are critical to
achieving efficient transfection.1377

An independent control of all these key material properties
(Figure 45) is relevant to a hydrogel-mediated gene delivery,

which in turn requires a creative use of synthetic chemistry and
expanding the toolbox of hydrogel building blocks beyond
PEG. Although PEG is synthetically convenient and ensures
structural integrity, it does not interact specifically with cellular
receptors, unlike biologically derived polysaccharides and
ECM-mimetic materials such as hyaluronic acid.1378 Blending
PEG with ECM-based materials such as HA, collagen, or fibrin
is a common strategy to enhance hydrogel biofunctionality.
Further, materials such as hyaluronic acid and fibrin can be
degraded by cell-secreted enzymes, unlike PEG hydrogels,
which require the enzymatic action of matrix metalloprotei-
nases, a family of zinc-based endopeptidases. Cross-linked
hydrogels can incorporate matrix metalloprotease-responsive
peptides, and DNA release rates can be readily tuned within
these enzymatically degradable hydrogels to prolong transgene
expression.1165,1379,1380 These studies suggest that degrad-
ability allows for cell infiltration and migration and is therefore
a key requirement for matrix-mediated gene delivery to be
effective.
RGD peptide motifs are frequently incorporated within

cross-linked hydrogels to facilitate cellular adhesion and
proliferation.1377,1380 It is important to note that the spatial
presentation of RGD motifs, rather than the surface density
alone, is critical in determining cell proliferation and migration
behaviors that ultimately impact transfection. In 2D cultures, it
was demonstrated that a clustered presentation of RGD was
more effective than uniform spatial distributions. Several
studies have noted the strong effects of RGD density1381

within hydrogels, with some studies observing a non-
monotonic relationship between RGD concentration and
transgene efficiency.1165 Mooney and coworkers systematically
varied the RGD density in conjunction with alginate hydrogel
modulus and observed that RGD density was a much more
influential design parameter than the hydrogel stiffness in
shaping gene silencing efficiency.1167 To engineer vascularized

Figure 45. Design considerations for 3D hydrogels. Reprinted with
permission from ref 1318. Copyright 2018 Elsevier.
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tissues or to guide the extension of neural conduits, it’s
necessary to ensure the spatial localization of genetic payloads
along well-defined regions within hydrogels. Shea and
coworkers generated cross-linked hydrogels bearing spatial
patterns of immobilized polyplexes through biotin−streptavi-
din interactions.1345 They note that specific immobilization
strategies are essential to pattern hydrogels and that the spatial
organization of cell-adhesive cues such as RGD is critical in
determining transgene expression. The placement of bioactive
cues such as RGD can be a useful lever of control to modulate
transfection outcomes. For instance, cellular migration has
been shown to promote cell-polyplex contact, but this requires
the creation of gradients of bioactive signals through
microfluidic synthesis of hydrogels.1382 Spatially-patterned
hydrogels can also lead to the creation of cellular microarrays
for screening studies. Lipoplexes encapsulated by fibrin
hydrogels could be spotted as a microarray allowing for
discrete hydrogel spots allowing pDNA densities, fibrinogen
concentration, and cell densities to be varied independ-
ently.1383

Many future directions for research in hydrogel-mediated
gene delivery exist, and one particularly interesting approach
focuses on photoresponsive hydrogels, wherein both mechan-
ical and chemical properties can be easily modified with
exquisite spatiotemporal selectivity.1384 Moreover, design rules
elicited from hydrogel platforms can be readily implemented
for electrospun polymer mats, another promising class of
tissue-engineering scaffolds.1385 While many studies have
preferred to encapsulate genetic cargo within coaxially
generated polymeric microfibers and nanofibers to protect
DNA from harsh processing conditions,1386 it would be highly
desirable to functionalize electrospun fibers with ECM coatings
and effect gene delivery from these bioactive matrices.

7.2. Polyelectrolyte Multilayers

Layer-by-layer assembly is a rapidly evolving materials platform
for nucleic acid delivery that combines exquisitely tunable
release kinetics, co-delivery of diverse cargoes encompassing
drugs,1403 nucleic acids,1404,1405 and imaging modal-
ities1406,1407 in a sequential or “scheduled” manner1408 and a
vastly diversifying substrate scope. The inherent simplicity of
LbL synthetic methodologies and its unique capabilities have
allowed LbL-based materials to address complex therapeutic
challenges in creative ways.1409 LbL coatings are assembled by
alternately depositing two or more macromolecules that share
complementary interactions with each other through electro-
static attractions, hydrogen bonding,1410 DNA base-pairing,

covalent bonds,181,1411,1412 or metal-ligand chelation.1413

Originally reported by Decher and Hong in 1991,1414 the
first reported synthesis of LbL coatings exploited electrostatic
interactions to build alternating layers of poly-
(styrenesulfonate) and poly(allylamine hydrochloride) starting
from a charged substrate.1414 Deposition steps are interwoven
with washing steps in order to remove unbound polymers,
ensuring the formation of monolayers and cyclical charge
reversion over the course of each immobilization sequence.
The iterative repetition of deposition/washing steps can create
multilayered architectures of controllable film thickness,
composition, and hydrolytic stability. LbL assembly is well-
suited for the encapsulation, protection, and release of
therapeutic nucleic acids such as pDNA, siRNA, and others
since the negative charge on nucleic acid backbones facilitates
complexation with cationic polymers such as PLL,1250,1415−1417

chitosan,1418−1420 and PEI.1421−1423 In the context of gene
delivery, LbL coatings are typically synthesized in the following
formats: (1) the traditional approach to LbL assembly employs
planar substrates, onto which polyelectrolytes are sequentially
immobilized, creating nanometer-thick multilayer films (Figure
46A).1421,1424−1426 Further, nucleic acid cargoes can be
impregnated within these films in the form of naked DNA or
RNA, polyplexes,1427 lipoplexes,1424,1428 or simply as adeno-
viral capsids. (2) LbL coatings can be applied to nano-
particle1429,1430 or microparticle1431,1432 “cores” of desired
shapes and sizes, such that the particle surface can be
successively modified with polyelectrolytes, thereby trans-
forming its interactions with cellular targets (Figure 46B).1433

(3) Micron-sized polymeric capsules1434−1438 composed of
“free-standing” LbL multilayer films can be formed through
sacrificial particle templates1439−1442 or through template-free
methods (Figure 46B).1443

In this section, we will discuss (1) engineering targeted film
properties by optimizing layer architecture and LbL assembly
conditions, (2) tuning degradation kinetics, triggering release
using chemical and physical stimuli, and co-delivering multiple
cargoes along individualized release trajectories to meet
complex therapeutic objectives, and (3) applying LbL coatings
to biomedically relevant substrates such as catheters, bandages,
and stents. We will conclude by outlining challenges involved
in the clinical translation of LbL-based vectors and directions
for future research.
LbL film properties can be controlled by modifying polymer

composition,1445 layer architecture, that is the number,
composition, and ordering of layer components,1446 and finally
by varying features of the solvent environment1447 such as pH

Figure 46. Schematic of an LbL assembly of polyelectrolyte multilayer films on (A) planar substrates and (B) nanoparticles. Reprinted with
permission from ref 1444. Copyright 2012 Elsevier.
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and ionic strength.1249,1448,1449 Lynn and coworkers developed
PBAE libraries1450 to probe structure-property relationships
that shed light on the relationship between film thickness,
charge density, hydrophobicity, and the erosion profiles and
release rates of anionic payloads.1451−1453 Further, by
combining PBAEs with contrasting payloads into a single
coating, the authors were able to control the timing and
sequence in which disparate pDNA payloads were deliv-
ered.1451 In addition to hydrolytic cleavage and enzymatic
degradation,1425 they also explored the use of charge reversal as
a film disassembly mechanism. This was accomplished either
by incorporating pH-responsive tertiary amines within the
polymer pendant groups974 or through an ester hydrolysis to
unmask carboxylate groups.1454

The use of an additional barrier layer to prevent interlayer
diffusion can reduce the mobility of the nucleic acid payload
and transform the release profile from a “bulk process” to a
more sustained surface-mediated process.1455 Oupicky and
coworkers elegantly demonstrated this concept by comparing
the degradation behavior of bioreducible LbL layers with and
without a PEI interlayer.1251 They concluded that, in the
absence of the interlayer, the film degradation proceeded
through the release of large micron-sized fragments of DNA
and cationic polymer, culminating in a burst release in a
reducing environment, while the interlayer-incorporating films
degraded at a more controlled rate over the span of 5 d by
breaking down into nanoparticles. Compared to tuning the
release kinetics of a single payload, managing the pharmaco-
kinetics of dual or multiple payload1438,1456 systems presents a
greater challenge, since the design space for multifunctional
LbL assemblies is significantly more complex. Hammond and
coworkers have reported several powerful case studies
demonstrating the utility of multifunctional “onion-like” LbL
nanoparticle platforms1457 capable of co-delivering diverse
cargoes such as siRNA and chemotherapeutics1403 and
biosensor peptides that can serve as urinary reporters for the
recurrence of metastatic cancer.1458 By focusing on poly-
electrolyte composition, layer architecture, and the surface
chemistry of the outermost shell, they identified critical design
parameters for the electrostatic assembly of dual payloads
towards cancer treatment.
Several responsive LbL assemblies have been engineered

with the goal of disrupting the interactions holding layers
together to release the payload on demand upon application of
appropriate physical stimuli.1444 LbL films have been used to
enhance transfection efficiencies during ultrasound-mediated
gene delivery by coating a microbubble or gas core with
alternating layers of cationic polymers and DNA, thereby
delivering a higher quantity of DNA than via ultrasound
treatment alone.1416,1459 Wang and coworkers employed
polyphosphoester to engineer degradable multilayers for
osteoblast regeneration.788 Similarly, electrochemical1460,1461

and electrical1423,1462 triggers have also been used to engineer
an on-demand film disassembly and cargo release. Incorporat-
ing redox-responsive moieties such as disulfide bonds that can
undergo cleavage by glutathione within the reducing environ-
ment of the cytosol has been a popular strategy to tune the
degradation kinetics of LbL films.772 Disulfide bonds can be
placed in the polymer backbone1252,1463,1464 in the form of
degradable crosslinkers1440 to tune layer rigidity and stability.
Additionally, the degree of cross-linking181,1252 can also be
modulated to extend the duration of a payload release. In
addition to the temporal control afforded by LbL assembly,

patterned films can also be easily created, allowing for spatial
control1253,1422,1423,1465 transfection outcomes and the creation
of microarrays for high-throughput experimentation.
Unlike other platforms for local or substrate-mediated gene

delivery,1466 LbL coatings can be conformally applied on a
broad range of surfaces, including highly tortuous geometries
such as stents, without the need for pretreatment. Oupicky and
coworkers coated a stainless steel mesh, which bears a net
negative charge, with alternating layers consisting of either a
bioreducible form of hyperbranched PAMAM or a PEI positive
control and plasmid DNA interspersed between cationic
layers.1230 In contrast, Park and coworkers pre-treated the
steel surface with dopamine-functionalized hyaluronic acid to
facilitate an immobilization of DNA/PEI polyplexes, instead of
relying on electrostatic interactions with the bare steel
surface.1467 LbL coatings are attractive alternatives to the use
of polymer-coated (such as PLGA) stents since they function
as a degradable matrix from which drugs or genes can be slowly
eluted. In contrast to the bulk degradation of a polymeric
matrix, LbL coatings not only offer more precise control of
DNA release kinetics but also enhance the cellular internal-
ization and endosomal escape of nucleic acid payloads within
diseased vascular cells.1468 Several examples of gene-eluting
stents based on LbL platforms have been reported1467,1469

including the use of PBAE-based films from Lynn and
coworkers.1470 While gene-eluting intravascular stents are
long-term interventions for the treatment of atherosclerosis,
other therapeutic contexts demand the application of DNA-
loaded LbL films on catheter balloons.1471−1473 Hammond and
coworkers have pursued meshes or bandages as substrates for
LbL-mediated gene silencing and demonstrated sustained
release during the entirety of the wound-healing process.1474

Percutaneous or intradermal gene delivery has been extremely
challenging, since the stratum corneum bars even the diffusion
of small-molecule drugs, ensuring that macromolecular
therapeutics such as DNA-based vaccines, genetic medicines
for skin cancer, and proteinaceous drugs cannot penetrate the
skin.1475 To penetrate the skin barrier, microneedle arrays have
been developed as safer and pain-free alternatives to traditional
needle-based administration. In the context of DNA vaccine
delivery, the groups of Irvine and Hammond developed
microneedle-based polymer multilayer “tattoos” wherein
polymer-coated microneedle patches carrying both DNA
vaccines and immune-stimulatory RNA were transferred into
the epidermis to achieve a sustained month-long release and
immune response, unlike an intradermal injection of DNA
alone.1476 Other studies have reported the use of PLGA
microparticles1477 and pH-responsive polymers1478 to promote
microneedle-mediated DNA vaccination, while Lynn and
coworkers took advantage of their tunable PBAE platform to
functionalize stainless steel microneedles with multilayers
containing either DNA or a model protein.1479 Wang and
coworkers modified PCL-based microneedle arrays with
polyelectrolyte multilayers consisting of a pH-responsive
polymer and a plasmid DNA intended to treat subdermal
tumors.1480 These LbL-functionalized microneedle patches
outperformed both intravenous injection as well as unfunction-
alized DNA-loaded microneedles in inhibiting tumor growth.
While microneedle-based DNA vaccination will undoubtedly
regain relevance in the face of the coronavirus disease of 2019
(COVID-19) pandemic, polymers for LbL-based surface
modification of microneedle patches must allow for tunable
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release kinetics, DNA dose control, and payload protection
against heat and mechanical stress.
Although LbL research has been gradually moving away

from manual film assembly in favor of automated production
methods that employ liquid-handling robots, the scalability,
robustness, and reproducibility of the LbL coating process
needs further improvement. Incorporating process control
modules to maintain pH and ionic strength within the narrow
windows demanded by precise LbL assembly will be a step
towards creating reproducible formulations. Additionally, LbL
nanoparticles have so far been restricted to spherical
geometries and systematic explorations of size and shape in
conjunction with LbL film composition and architecture have
the potential to be productive avenues for future research.

7.3. Polymer Brushes

Polymer brushes are typically employed as cell-instructive
coatings and non-fouling surfaces in biomedical research, and
hence their gene delivery capabilities have remained under-
investigated. Gautrot and coworkers, who have been
enthusiastic proponents of polymer brushes in gene delivery,
argue that, unlike drug delivery, where polymer brushes may be

limited by their low loading capacities, gene delivery presents
no such obstacles.1481 Compared to small-molecule drugs,
which require high dosages, moderate loadings of nucleic acid
therapeutics would suffice to bring about the desired clinical
outcomes. Further the versatility of surface-initiated (SI)
polymerization tools such as SI-RAFT and SI-ATRP allows for
orthogonal control over particle core composition, size, and
shape and polymer brush architecture, composition, density,
and thickness. For instance, graphene,1482 nanodiamonds,1483

and magnetic nanoparticles1484 have been employed, imparting
a highly desirable mixture of properties originating from
physically interesting inorganic cores and chemically tunable
polymer coronas. This modularity is more challenging to
achieve with other platforms, making polymer brushes an ideal
approach to independently probe the effects of physical as well
as chemical properties of polyplexes and arrive at meaningful
structure-property relationships, unlike with free polymer
chains, where an independent control of these attributes is
near-impossible.1485 Investigators must however be cautioned
that interactions between substrate-bound polymer brushes
and nucleic acids bear very little resemblance to what is

Table 5. Summary of Gene Therapeutics on the Marketa

therapeutic name disease target manufacturer approval granted notes approx cost

Gendicine Squamous cell
carcinoma

Shenzhen
SiBiono
Genetech

2003 China Turned down by USFDA,
withdrawn by EMA

$360 per dose

Macugen Age-related macular
degeneration

OSI
pharmaceuticals

2005 US Intravitreal injection every 6
weeks

$9000 per eye per year

Glybera Lipoprotein lipase
deficiency

UniQure 2012 EU Withdrawn from market in
2017

>$1 M in total

Kynamro Familial
hypercholesterolemia

Genzyme
corporation

2013 US Rejected by EMA in 2012 &
2013

$176 000

Imlygic Melanoma Amgen 2015 US First oncolytic virus approved $65 000 in total
Strimvelis Adenosine deaminase

deficiency
Orchard
Therapeutics

2016 EU “bubble boy disease” $665 000

Spinraza Spinal muscular
atrophy

Biogen 2016 US First gene therapeutic for SMA
in US.

$750 000 for the 1st year and
$375 000 per year thereafter

Exondys 51 Duchenne’s muscular
dystrophy

Sarepta
Therapeutics

2016 US Conditional USFDA approval $892 000/year

Kymriah B-cell lymphoma Novartis 2017 US First USFDA-approved cell-
based gene therapy

$475 000 in total

2018 EU
Luxturna Leber congenital

amaurosis
Spark
Therapeutics

2017 US Developed with Children’s
Hospital of Pennsylvania

$425 000 in total

2018 EU
Yescarta B-cell lymphoma Gilead Pharma 2017 US Cheaper than Kymriah $373 000

2018 EU
Defitelio Veno-occlusive disease Jazz

Pharmaceuticals
2017 US & EU ssODN mixture $160 000 in total

Onpattro Transthyretin-
mediated
amyloidosis

Alnylam
Pharmaceuticals

2018 US siRNA with lipid vehicles $450 000

Zynteglo Beta thalassemia Bluebird Bio 2019 EU Yet to seek USFDA approval $1.8 M
Zolgensma Spinal muscular

atrophy
Novartis 2019 US Most expensive to date $2 M

Givlaari Acute hepatic
porphyria

Alnylam
Pharmaceuticals

2019 US GalNac-conjugated RNAi
therapeutic

$575 000

Oxilumo Primary hyperoxaluria
type 1

2020 EU and US $493 000

Leqivo Reducing LDL
cholesterol

Novartis 2021 EU $15 000 per year

Tozinameran or
BNT162b2

Vaccine for SARS-
COV2

Pfizer/BioNTech 2020 US and EU,
emergence use

mRNA vaccines based on lipid
NPs

∼$20 per dose

mRNA-1273 Vaccine for SARS-
COV2

Moderna 2020 US, emergence
use authorization

∼$40 per dose

aPrices gathered from press releases.
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observed with their free polymer counterparts. The grafting
density of polymer brushes, in particular, has been shown to be
the most critical determinant of nucleic acid binding affinity,
loading density, and release rate. While sparsely grafted
polymer brushes (where the reduced grafting density Σ < 1)
can be easily obtained through “grafting-to” approaches,
densely bound polymer brushes (where Σ > 1) require the
controlled immobilization of polymerization initiators at
sufficiently high surface densities.1486 Moreover, nucleic acids
may bind to cationic brushes via one of two binding
configurations: superficial adsorption, where they do not
penetrate the brush layer, or brush infiltration, wherein they
overcome steric barriers to bind to charged sites within the
brush. While the choice of binding configuration is dependent
on brush density, with denser brushes forbidding infiltration,
the size, stranded-ness, and the backbone composition of the
nucleic acid payload also play key roles. Gautrot and coworkers
demonstrated that smaller oligonucleotides (10−22 bp) easily
permeate even densely grafted polymer brushes but bind
weakly and result in low levels of loading.1487 The adsorption
of larger payloads such as pDNA is hindered by high-density
brushes. This results in low pDNA loading levels, but these
complexes display extremely strong binding affinities. Gautrot’s
group also demonstrated that RNA payloads are much more
easily captured by polymer brushes, irrespective of grafting
density, and that the grafting density can be modulated in
order to attain the desired loading of RNA payloads.1488

Further, they have also drawn attention to the role played by
buffer composition, ionic strength, and pH in influencing the
brush conformation and swelling and ultimately deciding the
fate of DNA complexation.1481 Although polymer brushes are
attractive tools for producing serum-stable and highly efficient
polyplexes, their synthesis and biological testing must be
accompanied by rigorous physicochemical characterization via
SPR, ellipsometry, light-scattering techniques, and themogravi-
metric analysis. Further, research on polymer-brush-function-
alized nanoparticles must move past a heavy reliance on
PDMAEMA and incorporate polycationic brushes containing
varied charge centers, monomer distributions, and architec-
tures. The effect of particle size and curvature on the brush
conformation and DNA complexation is also an apt subject for

further studies. We would also like to point out the promise of
using mixed-brush systems comprised of PAA and polycationic
polymers such that the PAA termini can be decorated with
RGD motifs1362 as well as growth factors in order to modulate
biointerfacial behavior.
In this section we highlighted some interesting examples of

non-traditional material design approaches to polymeric gene
delivery. These examples demonstrate that hybrid polymer
engineering approaches employing tissue-engineering scaffolds,
crosslinked hydrogels, engineered nanoparticle templates, and
polyelectrolyte multilayer coatings can be as powerful as
traditional polymer synthetic approaches.

8. CLINICAL OUTLOOK FOR POLYMER-MEDIATED
GENE THERAPY

Synthetic advances and an improved understanding of
structure-function relationships have accelerated progress in
ex vivo and in vivo delivery applications of polymeric vehicles.
Yet very few polymers have progressed to clinical trials and
testing in human subjects. In this section, we will focus on the
clinical translation of gene therapeutics, restricting our
attention to synthetic vehicles such as lipid nanoparticles and
polymers. We will begin our clinical perspective by drawing
attention to recently approved gene therapy products. Then we
will describe clinical trials involving lipid-based and polymeric
vehicles and discuss promising developments from these
nonviral clinical studies, particularly with lipids.
Although the first demonstration of gene therapy was

published in 1972, it was not until 2017 that the United States’
FDA (USFDA) granted approval for the clinical use of gene
therapeutics.1489 The intervening years have witnessed an
explosion of clinical trials and USFDA approvals with several
gene therapeutics reaching the market.1489 Salient examples
have been mentioned in Table 5 with notes on approval
history and cost.
All but six of the above therapeutics are based on viral

vectors, which may have contributed to the high treatment
costs.1490 Recognizing the importance of developing synthetic
alternatives to engineered viruses, there have been increasing
efforts to test formulations based on lipids and polymers in the

Figure 47. Summary of clinical trials by (A) therapeutic area, (B) delivery modality. Data obtained from The Journal of Gene Medicine. Copyright
2019 John Wiley and Sons. Database updated December 2019.
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clinic. As of December 2019, 3025 clinical trials have been
initiated using therapeutic nucleic acids. The recent approvals
granted to Givosiran, Oxlumo, and Leqivo (siRNA therapeu-
tics functionalized with GalNAc residues) represents an
exciting development for siRNA-glycan conjugates.1491 At the
time of submitting this manuscript, two lipid-based mRNA
vaccines for SARS-CoV-2, mRNA-1273 (Moderna), and
BNT162b2 (Pfizer) released interim results from their
respective Phase 3 trials, based on which emergency use
authorization was granted by the FDA and the European
Union (EU).
If we break down the trials by disease area (Figure 47A),

cancer treatment emerges as the most widely targeted
therapeutic area, a trend we attribute to advances made by
molecular biologists in understanding the genetic basis of
cancer progression.1492 Surprisingly, inherited disorders under-
lying monogenic diseases constitute a rather small proportion
of clinical trials, possibly because these disorders are extremely
rare among the population and present financial challenges to
development.1493 We believe that ocular disease, vaccine
development for infectious diseases such as SARS-CoV-2, and
cardiovascular diseases will constitute a great proportion of
clinical trials in the years to come. A breakdown by delivery
modality reveals a stark picture: nonviral methods such as
lipofection, gene guns, electroporation, and naked payload
delivery constitute a small fraction of the more than 3000 trials
initiated thus far (Figure 47B). Although the delivery
landscape was historically dominated by adenoviruses,
retroviruses, and lentiviruses, adeno-associated viruses are
quickly emerging as safer viral alternatives, since they have
been shown to elicit more predictable and less severe immune
responses during clinical trials.44 Now, we will briefly survey
recent clinical developments with drugs composed of
polymers/nucleic acids, compare the contrasting clinical fates
of polymeric vehicles with those of lipid vehicles, and conclude
with some recommendations for improving clinical outcomes
of polymeric vehicles.
The Davis lab has extensively reported on the systemic

administration of siRNA-based therapeutics using polymeric
delivery platforms not only in primate models120 but also in
human subjects.113,995,996,1494 Clinical trials conducted with
CALAA-01 (No. 2 in Table 6), a cyclodextrin-based delivery
system for siRNA silencing of ribonucleotide reductase subunit
2, have been described in detail in another report,112 where a
detailed analysis of clinical trials conducted up to 2015 can be
found. Therefore, we will restrict our attention to more recent
clinical candidates in this Account. PEI features in 7 of 19 trials
involving polymers, underscoring the versatility of PEI-based
vehicles across therapeutic applications ranging from acquired
immunodeficiency syndrome (AIDS) vaccination (No. 1 in
Table 6), diphtheria vaccination (No. 16 in Table 6), and
cancer treatment (Nos. 3, 12, and 17−19 in Table 6). Among
active PEI-based trials, the combination therapy CYL-02 that
consists of plasmid DNA encoding SST2 (a tumorigenesis
suppressor) and a chemotherapeutic, gemcitabine (No. 12 in
Table 6), seems particularly promising for the treatment of
pancreatic ductal adenocarcinoma, a leading cause of death.
This nonviral therapeutic developed by the University
Hospital, Toulouse, resulted in mild toxicities, and no serious
adverse events were recorded. CYL-02 DNA was detected in
blood and tumors, while therapeutic RNAs were detected in
tumors. The authors noted that nine patients exhibited disease
symptoms for six months following treatment, while two of

these patients experienced long-term survival.1495 Since this
therapeutic is well-tolerated and led to disease stability, it will
be interesting to examine results from phase 2 studies towards
the end of next year. For the same disease, another
combination therapy is under clinical investigation (No. 15
in Table 6). This siRNA-based therapeutic from Silenseed Ltd.
has not provided the composition of the “miniature
biodegradable biopolymeric matrix” employed to encapsulate
the drugs and nucleic acids.
Spherical nucleic acids, where nucleic acids and polycations

are conjugated to a gold nanoparticle core, have also entered
the clinical pipeline, with NU-129 (No. 13 in Table 6) being
tested in glioblastoma patients. In phase 0 or early phase 1
studies, no significant toxicities were seen in a cohort of eight
patients. Since two patients reported adverse events (one grade
3, one grade 4) and were removed from the trial, tumor tissue
could be collected from only six of the eight patients. Since
gold nanoparticles can be quantified via inductively coupled
plasma-mass spectrometry, gold accumulation was verified in
the tumor tissue of all six of these patients.1496 Finally, an
investigational therapeutic (BC-819, No. 19 in Table 6) that
relies on the tendency of the diphtheria toxin to be expressed
specifically in malignant cells, reported its phase 2 results
recently.1497 This PEI-complexed plasmid DNA was found to
be well-tolerated among 38 patients and did not contribute to
toxicity during an intravesical therapy of non-muscle invasive
bladder cancer. However, this trial did not progress to phase 3
due to a lack of efficacy.
We have tabulated a representative list of 22 clinical trials

involving lipid nanoparticles, of which three have already
gained FDA approval that are current as of the publication date
of this review. We have also highlighted recent trials involving
electroporation and the Sleeping Beauty transposon systems.
We draw attention to some notable examples that entered
Phase 3 clinical trials successfully. Patisiran (No. 11 in Table
7) is an RNA interference therapeutic agent marketed by
Alnylam Therapeutics that relies on the encapsulation of a
double-stranded siRNA within lipid nanoparticles to inhibit a
hepatic synthesis of transthyretin.1498 This is the first lipid-
based gene therapeutic to be granted FDA approval (2018)
and has renewed industry interest in lipofection as a viable
nonviral platform.
The approval of two lipid-based mRNA vaccines for SARS-

COV-2 has lent further impetus to the clinical translation of
non-viral gene delivery platforms. For mRNA-1273, a vaccine
efficacy rate of 94.5% was reported, with 90 of the COVID-19
cases occurring in the placebo cohort and only 5 in the
vaccinated cohort.13 All 11 instances of severe illness occurred
in the placebo group. Results from the trials of BNT162b2
indicated a vaccine efficacy above 95%.1499 While lingering
concerns about the use of PEG in mRNA-1273 and
BNT162b2 persist, we anticipate that unpleasant side effects
resulting from both the inherent immunogenicity of mRNA as
well as the presence of anti-PEG antibodies in some patients
will spur the development of PEG alternatives such as
carbohydrates, polyoxazolines, and zwitterionic moieties. The
success stories of lipid nanoparticle platforms such as mRNA-
1273, BNT162b2, and Patisiran motivate us to learn from the
design philosophies of lipid nanoparticle development and
apply these to polymeric gene delivery.
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9. CONCLUSIONS AND OUTLOOK

Because of breakthroughs in synthetic tools and physicochem-
ical characterization methods, polymeric vehicles for gene
delivery have grown in sophistication, multifunctionality, and
precision. As more and more creative examples of polymer
architectures and biofunctional monomers continue to be
developed, we have witnessed unprecedented improvements in
the properties and delivery capabilities of polymeric vehicles.
Serum stability, immune evasion, payload protection, and
intracellular trafficking are formidable biological barriers that
demand numerous material properties be engineered and
calibrated with care. Several classes of polymeric materials
highlighted in this Account have juggled these competing
design requirements to demonstrate exquisite spatiotemporal
control in vivo and ex vivo. These improvements have allowed
us to both visualize and manipulate the complex cascade of
biological events leading up to intracellular gene delivery and
to harness a delicate web of intermolecular interactions,
ultimately facilitating the desired polyplex-cell interactions. For
instance, researchers have innovated ingenious polymer design
strategies to navigate the toxicity−efficiency trade-off through
decationization and the use of hydrophobic motifs, to alleviate
aggregation in serum-rich environments while ensuring
payload integrity through a triggered shedding of hydrophilic
stealth layers and to facilitate highly precise delivery of genetic
cargoes to specific cellular targets through the use of variegated
targeting moieties. Ultimately, successful gene delivery
approaches benefit from an interdisciplinary effort and a
balance between investigating fundamental mechanistic ques-
tions and solving development challenges that may hinder
clinical translation.
Surprisingly, progress in polymer chemistry and engineering

has not been accompanied by a commensurate progress in the
clinical translation of polymeric gene delivery vectors. We
believe that clinical progress has been hindered by the
workflows that are currently being used for the biological
evaluation and screening of polyplex formulations. Typically,
formulations that do not achieve efficient delivery during in
vitro screening are excluded from subsequent in vivo studies.
For instance, Langer and coworkers1500 employed a statistical
design of experiments to optimize formulation parameters
using an in vitro evaluation. After having triaged incon-
sequential process parameters during in vitro studies, they
again employed DoE to reduce the in vivo experimental
burden to further optimize the lipid nanoparticle composition.
This approach assumes that in vitro gene delivery experiments
are good predictors of in vivo outcomes, an assumption that
has been called into question repeatedly.1500 Instead of
screening polyplex libraries in vitro before identifying a small
subset of promising candidates for further in vivo evaluation,
some groups have eschewed in vitro studies altogether,
reasoning that experimental conditions during cell culture do
not faithfully reproduce physiological barriers faced by
formulations within living organisms.1501 Dahlman and
coworkers have improvised a powerful approach for boosting
in vivo experimental throughput by employing multiplexed
signals in the form of DNA barcodes to tag chemically distinct
lipid formulations. Recognizing the reliability, rapidity, and
large multiplexing bandwidth afforded by storing and retrieving
information from oligonucleotide strands, they demonstrated a
simultaneous in vivo analysis of over 150 nanoparticles using
their customized workflow, Joint Rapid DNA Analysis of

Nanoparticles (JORDAN).1502 We believe that adopting
similar high-throughput in vivo experimental platforms will
allow us to explore the polymer design space more efficiently
and in a physiologically relevant environment. Currently,
polymers have underperformed relative to lipids when tested in
clinical gene therapy settings, with no polymer candidate
having reached phase 3. This is rather surprising, given that
polymers offer incontestable advantages over lipids when we
consider reproducibility and scalability. We posit that this
performance differential can be bridged if polymer formula-
tions are optimized through multiplexed in vivo studies rather
than a sequential strategy where in vitro screening is followed
by in vivo validation.
Secondly, logistical planning of preclinical studies is critical

to facilitate agile transitions from early phase development to
preclinical studies, ensuring the timely submission of investiga-
tional new drug dossiers.1503 Proper planning of in vitro and in
vivo pharmacokinetic studies that measure absorption,
distribution, metabolism, and excretion properties, immuno-
genicity evaluation via antibody screening, and toxicology
studies that identify dosing ranges and quantify the toxicity
induced by repeat dosing are essential. The clinical potential of
polymeric vehicles can be fully realized only if we work in a
coordinated fashion with clinicians, regulators, and entrepre-
neurs when the discovery and development processes are still
in their nascency.
A number of challenges should be addressed for polymers to

tackle critical therapeutic challenges: (1) The question of
whether polymers that are highly efficient with a certain cell
type can extend their performance across diverse cell types has
not been sufficiently investigated. We do not yet know whether
polymer structure and composition should be tailored
independently for each cell type, given that endocytosis
pathways are known to be cell-type-dependent. (2) On a
similar note, the tissue specificity of engineering polyplexes
also remains an open question, and the lack of clarity on this
aspect has hindered in vivo translation. While synthetic vector
platforms based on lipid nanoparticles have established design
guidance for liver-targeted and lung-targeted delivery, similar
investigations are still at their nascent stage with polymers. (3)
The overlap in polymer design criteria across multiple nucleic
acid modalities (mRNA, pDNA, RNP, etc.) must be probed in
detail. While some investigators have reported that certain
nucleic acid payloads have more stringent design spaces for
polymeric vectors than others, other studies have laid claim to
“universal” delivery platforms that are functional across a broad
selection of nucleic acid cargoes. (4) Although biodegradable
polymers are considered most favorably in the light of
regulatory approval, the long-term safety profile of these
vehicles must be evaluated, and the immune responses to
degradation products must be examined in detail. (5)
Synthetic chemists must develop monomers that possess
theranostic capabilities, by coupling delivery functionalities
with imaging capabilities (such as Raman imaging,1504

magnetic resonance imaging (MRI), or aggregation-induced
emission (AIE)). Theranostic polyplexes will combine delivery
efficiency with a detailed mechanistic view of intracellular
events that are often challenging to monitor via traditional
microscopy. (6) Modular approaches to polymer synthesis
must be developed since specialty monomers are often difficult
to polymerize. Polymer chemists must continue to develop
post-polymerization approaches that allow us to plug in
arbitrary ratios of desired functionalities on polymer scaffolds
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of precisely controlled lengths and architectures. (7) Advances
in experimental automation, high-throughput polymerization,
and data science must be leveraged to develop a materiomics
approach to polymeric vector discovery.1505 Accompanied by
an in-depth characterization, polymer synthesis and processing
are well-poised to tackle fundamental biological questions and
ultimately facilitate the widespread clinical deployment of
polymeric biomaterials in therapeutic gene delivery.
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ABBREVIATIONS

ABC, Accelerated blood clearance; AEA, Acrylamidoethyl-
amine; AEMA, N-(2-Aminoethyl) methacrylamide; AFM,
Atomic force microscopy; AIDS, Acquired immunodeficiency
syndrome; AIE, Aggregation-induced emission; APMA, N-(3-
Aminopropyl)methacrylamide; APNBMA, 5-(3-(Amino)-
propoxy)-2-nitrobenzyl methacrylate; ASGPR, Asialoglycopro-
tein receptors; ASO, Antisense oligonucleotides; ATPase,
Adenosine triphosphatase; ATRP, Atom transfer radical
polymerization; AzEMA, 2-Azidoethyl Methacrylate;
Bcl2L12, B-cell lymphoma 2-like protein 12; BDNF, Brain-
d e r i v ed neu ro t r oph i c f a c t o r ; B IP , 2 , 6 -B i s ( 1 -
methylbenzimidazolyl)pyridinyl; BMA, Butyl methacrylate;
BMP, Bone morphogenetic protein; BPEI, Branched poly-
ethyleneimine; BSA, Bovine serum albumin; CARPA, comple-
ment activation-related pseudoallergy; CBD, Carbohydrate-
binding domains; CBMA, Carboxybetaine methacrylate; CD,
Cyclodextrin and circular dichroism; CFTR, Cystic fibrosis
transmembrane conductance regulator; CHE, 2-Cyclohexy-
lethyl; CLIC, Clathrin-independent carrier; CMV, Cytomega-
lovirus; COVID-19, Coronavirus disease of 2019; CPMG,
Carr−Purcell−Meiboom−Gill pulse sequence; CPP, Cell-
penetrating peptides; CPT, Camptothecin; CRISPR, Clustered
regularly interspaced short palindromic repeat; CTA, Chain
transfer agent; CuAAC, Copper-catalyzed azide−alkyne click
chemistry; DAB, Diaminobutane-dendrimer; DCK::UMK,
Deoxycytidine kinase::uridine monophosphate kinase; DEAE,
Diethylaminoethyl; DEAET, 2-(Diethylamino)ethanethiol hy-
drochloride; DLS, Dynamic light scattering; DMAE, 2-
(Dimethylamino)-ethyl; DMAEMA, 2-(Dimethylamino)ethyl
methacrylate; DMAPMA, N-[3-(N,N-dimethylamino)propyl]-
methacrylamide; DMBA, N,N′-dimethylbutylamine; DMEA,
N,N′-dimethylethanolamine; DMPC, 1,2-Dimyristoyl-sn-glyc-
ero-3-phosphocholine; DNA, Deoxyribonucleic acid; DOPC,
1,2-Dioleoyl-sn-glycero-3-phosphocholine; DOPE, 1,2-Dioleo-
yl-sn-glycero-3-phosphoethanolamine; DOSY, Diffusion or-
dered spectroscopy; DOTA, 1,4,7,10-Tetraazacyclododecane-
1,4,7,10-tetraacetic acid; DOTAP, 1,2-Dioleoyl-3-trimethylam-
monium propane; DOX, Doxorubicin; DPT, N-[N-(3-amino-
propyl)-3-aminopropyl]; DPyPE, 1,2-Diphytanoyl-sn-glycero-
3-phosphoethanolamine; DTS, DNA nuclear targetting
sequences; EAA, Ethyl acrylic acid; ECM, Extracellular matrix;
EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDI,
Azido-functionalize PAMAM dendrimer; EGF, Epidermal
growth factor; eIF5A, Eukaryotic Translation Initiation Factor
5A; ELS, Electrophoretic light scattering; EMA, European
Medicines Agency; EPHA2, Ephrin type-A receptor 2; EPR,
Enhanced permeability and retention; ER, Endoplasmic
reticulum; FCS, Fluorescence correlation spectroscopy;
FDA/USFDA, Food and Drug Administration; FGF, Fibro-
blast growth factor; FITC, Fluorescein isothiocyanate; FTIR,
Fourier-transform infrared spectroscopy; GAG, Glycosamino-
glycan; GalNAc, N-acetyl-D-galactose; GAPDH, Glyceralde-
hyde 3-phosphate dehydrogenase; GAP-DMORIE, (±)-N-(3-
Aminopropyl)-N,N-dimethyl-2,3-bis(cis-9-tetradecenyloxy)-1-
propanaminium bromide; GEEC, GPI-Anchored protein-
enriched early endosomal compartment; GFP, Green fluo-
rescent protein; GlcNAc, N-acetyl-D-glucose; GMA, Glycidyl
methacrylate; GPI, Glycosylphosphatidylinositol; GSH, Gluta-
thione; GTPase, Guanosine Triphosphatase; HA, Hyaluronic
acid; HBV, Hepatitis B Virus; HDR, Homology-directed
repair; HEMA, 2-Hydroxyethyl methacrylate; HEPES, 4-(2-

Hydroxyethyl)-1-piperazineethanesulfonic acid; HGF, Hepa-
tocyte growth factor; HIF, Hypoxia-inducible factor; HIV,
Human immunodeficiency viruses; HPLC, High presssure
liquid chromatography; HPMA, N-(2-Hydroxypropyl)-
methacrylamide; HSQC, Heteronuclear single quantum
coherence spectroscopy; IL, Interleukin; ITC, Isothermal
titration calorimetry; JORDAN, Joint Rapid DNA Analysis of
Nanoparticles; LODER, Local drug eluter; MAS, Methacrylox-
ysuccinimide; MAT, Methacrylamidotrehalose; MPC, 2-
Methacryloyloxyethyl phosphorylcholine; MRI, Magnetic
resonance imaging; MSC, Mesenchymal Stem Cells″; N/P
Ratio, Ratio of amine groups in the polymer vector to
phosphate groups within nucleic acid payloads; nBMA, n-Butyl
methacrylate; NGF, Nerve growth factor; NHEJ, Non-
homologous end-joining; NHS, N-Hydroxysuccinimide;
NHSA , N - (Ac ry loxy ) succ in im ide ; NHSMA, N -
(Methacryloxy)succinimide methacrylate; NLS, Nuclear local-
ization sequence; NMP, Nitroxide-mediated polymerization;
NMR, Nuclear magnetic resonance spectroscopy; NOESY,
Nuclear Overhauser effect spectroscopy; NPCs, Nuclear pore
complexes; NPs, Nanoparticles; NTA, Nitrilotriacetic acid or
Nanoparticle tracking analysis; ODN, Oligodeoxynucleotides;
OEGMA, Oligoethylene glycol methacrylate; OEI, Oligoethy-
lenimine; P4VPQ, Poly(N-methyl 4-vinylpyridine iodide);
PAA, Poly(acrylic acid); PAAs, Poly(amidoamines); PAEM,
Poly(aminoethyl methacrylate); PAEMA, Poly(2-aminoethyl-
methacrylamide); PAMA, Poly(amidoamine); PAMAM, Poly-
(amidoamine); PAsp(DET), Poly(N-[N′-(2- aminoethyl)-2-
aminoethyl]aspartamide); PAsp(TEP), Poly(N-(N′-{N″-[N′′′-
(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-2-aminoethyl)-
aspartamide); PBAE, Poly(β-amino ester); PBL, Peripheral
blood lymphocytes; PBMA, Poly(butyl methacrylate); PBS,
Phosphate-buffered saline; PCL, Poly(ε-caprolactone);
PCSK9, Proprotein convertase subtilisin/kexin type 9; PDA,
Polydopamine; PDADMAC, Poly(diallyldimethylammonium
chloride); PDMA, Poly(N,N-dimethylamino-2-ethylmethacry-
late); PDMAEA, Poly(N,N-dimethylamino-2-ethylacrylate) or
Poly(2-(dimethylamino)ethyl acrylate); PDMAEMA, Poly-
(N,N-dimethylamino-2-ethylmethacrylate) or Poly(2-
(dimethylamino)ethyl methacrylate); pDNA, Plasmid DNA;
PDTEMA, Poly(N-[2-(2-pyridyldithio)]ethyl methacryla-
mide); PEG, Poly(ethylene glycol); PEGA, Poly(ethylene
glycol) acrylate; PEGEEMA, Poly(ethylene glycol) ethyl ether
methacrylate; PEGMA, Poly(ethylene glycol) methacrylate;
PEHA, Pentaethylenehexamine; PEI, Poly(ethylenimine);
PFG, Pulsed-field gradient; PFP, Pentafluorophenyl; PFPA,
Pentafluorophenyl acrylate; PFPMA, Pentafluorophenyl meth-
acrylate; PGA, Poly(glutamic acid); PGAA, Poly-
(glycoamidoamine); PGBA, Poly(glycidylbutylamine); PGEA,
Ethanolamine-functionalized poly(glycidyl methacrylate);
PGMA, Poly(glycidyl methacrylate); PHPMA, Poly(N-(2-
Hydroxypropyl)methacrylamide); PIC, Polyion complex;
PKN3, protein kinase N3; PLA, Poly(lactic acid); PLG,
Poly(L-glutamate); PLGA, Poly(lactic-co-glycolic acid); PLK,
Poly(L-lysine); PLK1, Serine/threonine-protein kinase; PLL,
Poly(L-lysine); PLLA, Poly(L-lactic acid); PLMA, Poly(lauryl
methacrylate); PMAA, Poly(methacrylic acid); PMAG, Poly-
(2-deoxy-2-methacrylamido glucopyranose); PMMA, Poly-
(methyl methacrylate); PMPC, Poly(2-methacryloyloxyethyl
phosphorylcholine); PMPD, Poly[N-(3-(methacryloylamino)
propyl)-N,N-dimethyl-N-(3-sulfopropyl) ammonium hydrox-
ide]; PnBA, Poly(n-butyl acrylate); PnBMA, Poly(n-butyl
methacrylate); PNIPAM, Poly(N-isopropyl acrylamide); PO-
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EGMA, Poly(oligoethylene glycol methacrylate); POSS,
Polyoctahedral silsesquioxanes; PPA, Poly(phosphoramidate);
PPG, Poly(propylene glycol); PPI, Poly(propylenimine); PS,
Poly(styrene); PSS, Poly(sodium 4-styrenesulfonate); PTBP,
Poly(tributyl-(4-vinylbenzyl)phosphonium chloride); PTEP,
Poly(triethyl-(4-vinylbenzyl)phosphonium chloride); PTMAE-
MA, Poly((2-trimethylamino)ethyl metacrylate chloride);
PTX, Paclitaxel; PVBTMA, Poly((vinylbenzyl) trimethylam-
monium); PVDMA, Poly(2-vinyl-4,4-dimethylazlactone);
PVP, Poly(N-ethyl-4-vinylpyridinium bromide); QPDMAE-
MA, Quaternized PDMAEMA; RAFT, Reversible addition−
fragmentation chain transfer; RES, Reticuloendothelial system;
RISC, RNA-induced silencing complex; RLU, Relative
luminescence units; RNA, Ribonucleic acid; RNPs, Ribonu-
cleoproteins; ROMP, Ring-opening metathesis polymerization;
ROP, Ring-opening polymerization; ROS, Reactive oxygen
species; SAM(S), Self-assembled monolayer(s); SANS, Small-
angle neutron scattering; SARS-CoV-2, Severe acute respira-
tory syndrome coronavirus 2; SAXS, Small-angle X-ray
scattering; SBMA, Sulfobetaine methacrylate; SEM, Scanning
electron microscopy; SERS, Surface-Enhanced Raman Spec-
troscopy; siRNA, Small interfering RNA; SLS, Static light
scattering; SMA, Spinal Muscular Atrophy; SPAAC, Strain-
promoted azide−alkyne cycloaddition; SPR, Surface plasmon
resonance; SSOs, Splice-switching oligonucleotides; TALENS,
Transcriptor activator-like nucleases; TAPP, 5,10,15,20-
Tetrakis(4-aminophenyl) porphyrin; TAR, Transactivation
response element″; TCPS, Tissue culture polystyrene; TEM,
Transmission electron microscopy; TEPA, Tetraethylenepent-
amine; TLR, Toll-like receptor; TMCC, 2-methyl-2-carboxytri-
methylene carbonate; TNF-α, Tumor necrosis factor alpha;
TRAIL, TNF-related apoptosis-inducing ligand; TREN, Tris-
(2-aminoethyl) amine; UCF, Ultracentrifugation; UV, Ultra-
violet; VBC, Vinyl benzyl chloride; VEGF, Vascular endothelial
growth factor; VIPER, Virus-inspired polymer for endosomal
release; XPS, X-ray photoelectron spectroscopy
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(670) Skandalis, A.; Uchman, M.; Štep̌ánek, M.; Kereïche, S.; Pispas,
S. Complexation of DNA with QPDMAEMA-b-PLMA-b-POEGMA
Cationic Triblock Terpolymer Micelles. Macromolecules 2020, 53,
5747−5755.
(671) Rinkenauer, A. C.; Schallon, A.; Günther, U.; Wagner, M.;
Betthausen, E.; Schubert, U. S.; Schacher, F. H. A Paradigm Change:
Efficient Transfection of Human Leukemia Cells by Stimuli-
Responsive Multicompartment Micelles. ACS Nano 2013, 7, 9621−
9631.
(672) Manganiello, M. J.; Cheng, C.; Convertine, A. J.; Bryers, J. D.;
Stayton, P. S. Diblock Copolymers with Tunable pH Transitions for
Gene Delivery. Biomaterials 2012, 33, 2301−2309.
(673) Alhoranta, A. M.; Lehtinen, J. K.; Urtti, A. O.; Butcher, S. J.;
Aseyev, V. O.; Tenhu, H. J. Cationic Amphiphilic Star and Linear
Block Copolymers: Synthesis, Self-Assembly, and in Vitro Gene
Transfection. Biomacromolecules 2011, 12, 3213−3222.
(674) Li, S.-D.; Huang, L. Stealth Nanoparticles: High Density but
Sheddable PEG Is a Key for Tumor Targeting. J. Controlled Release
2010, 145, 178−181.
(675) Gaspar, V. M.; Baril, P.; Costa, E. C.; De Melo-Diogo, D.;
Foucher, F.; Queiroz, J. A.; Sousa, F.; Pichon, C.; Correia, I. J.
Bioreducible Poly(2-ethyl-2-oxazoline)-PLA-PEI-SS Triblock Copoly-
mer Micelles for Co-Delivery of DNA Minicircles and Doxorubicin. J.
Controlled Release 2015, 213, 175−191.
(676) Gary, D. J.; Lee, H.; Sharma, R.; Lee, J. S.; Kim, Y.; Cui, Z. Y.;
Jia, D.; Bowman, V. D.; Chipman, P. R.; Wan, L.; et al. Influence of
Nano-Carrier Architecture on in Vitro siRNA Delivery Performance
and in Vivo Biodistribution: Polyplexes vs Micelleplexes. ACS Nano
2011, 5, 3493−3505.
(677) Mao, C.-Q.; Du, J.-Z.; Sun, T.-M.; Yao, Y.-D.; Zhang, P.-Z.;
Song, E.-W.; Wang, J. A Biodegradable Amphiphilic and Cationic
Triblock Copolymer for the Delivery of siRNA Targeting the Acid
Ceramidase Gene for Cancer Therapy. Biomaterials 2011, 32, 3124−
3133.
(678) Zhang, Y.; Buhrman, J. S.; Liu, Y.; Rayahin, J. E.; Gemeinhart,
R. A. Reducible Micelleplexes Are Stable Systems for Anti-miRNA
Delivery in Cerebrospinal Fluid. Mol. Pharmaceutics 2016, 13, 1791−
1799.
(679) Meli, L.; Lodge, T. P. Equilibrium vs Metastability: High-
Temperature Annealing of Spherical Block Copolymer Micelles in an
Ionic Liquid. Macromolecules 2009, 42, 580−583.
(680) Hayward, R. C.; Pochan, D. J. Tailored Assemblies of Block
Copolymers in Solution: It Is All about the Process. Macromolecules
2010, 43, 3577−3584.
(681) Wang, H.; Ding, S.; Zhang, Z.; Wang, L.; You, Y. Cationic
Micelle: A Promising Nanocarrier for Gene Delivery with High
Transfection Efficiency. J. Gene Med. 2019, 21, No. e3101.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

CY

https://doi.org/10.1021/acs.biomac.6b00138
https://doi.org/10.1021/acs.biomac.6b00138
https://doi.org/10.1021/acs.biomac.6b00138
https://doi.org/10.1021/acscentsci.9b00843
https://doi.org/10.1021/acscentsci.9b00843
https://doi.org/10.1021/acscentsci.9b00843
https://doi.org/10.1021/acscentsci.9b00843
https://doi.org/10.1021/acs.biomac.8b00146
https://doi.org/10.1021/acs.biomac.8b00146
https://doi.org/10.1021/bm5001197
https://doi.org/10.1021/bm5001197
https://doi.org/10.1021/bm5001197
https://doi.org/10.1016/j.addr.2012.09.013
https://doi.org/10.1016/j.addr.2012.09.013
https://doi.org/10.1016/j.addr.2012.09.013
https://doi.org/10.1007/s11095-006-9132-0
https://doi.org/10.1007/s11095-006-9132-0
https://doi.org/10.1016/S0168-3659(01)00299-1
https://doi.org/10.1016/S0168-3659(01)00299-1
https://doi.org/10.3390/polym8040099
https://doi.org/10.3390/polym8040099
https://doi.org/10.1021/nn203503h
https://doi.org/10.1021/nn203503h
https://doi.org/10.1021/nn203503h
https://doi.org/10.1007/s12551-017-0392-1
https://doi.org/10.1007/s12551-017-0392-1
https://doi.org/10.1007/s12551-017-0392-1
https://doi.org/10.1016/j.colsurfb.2017.06.002
https://doi.org/10.1016/j.colsurfb.2017.06.002
https://doi.org/10.1016/j.colsurfb.2017.06.002
https://doi.org/10.1016/j.biomaterials.2014.10.036
https://doi.org/10.1016/j.biomaterials.2014.10.036
https://doi.org/10.1016/j.biomaterials.2014.10.036
https://doi.org/10.1080/17425247.2016.1214567
https://doi.org/10.1080/17425247.2016.1214567
https://doi.org/10.1016/j.jconrel.2020.04.041
https://doi.org/10.1016/j.jconrel.2020.04.041
https://doi.org/10.1007/s00280-017-3273-1
https://doi.org/10.1007/s00280-017-3273-1
https://doi.org/10.1039/c2cs35115c
https://doi.org/10.1021/bm800876v
https://doi.org/10.1021/bm800876v
https://doi.org/10.1021/bm800876v
https://doi.org/10.1021/bm800876v
https://doi.org/10.1016/j.biomaterials.2014.02.010
https://doi.org/10.1016/j.biomaterials.2014.02.010
https://doi.org/10.1016/j.biomaterials.2014.02.010
https://doi.org/10.1016/j.biomaterials.2012.05.067
https://doi.org/10.1016/j.biomaterials.2012.05.067
https://doi.org/10.1016/j.biomaterials.2012.05.067
https://doi.org/10.1016/j.biomaterials.2014.02.016
https://doi.org/10.1016/j.biomaterials.2014.02.016
https://doi.org/10.1016/j.biomaterials.2014.02.016
https://doi.org/10.1016/j.biomaterials.2014.02.016
https://doi.org/10.1021/jacs.9b06218
https://doi.org/10.1021/jacs.9b06218
https://doi.org/10.1021/jacs.9b06218
https://doi.org/10.1021/acs.macromol.9b01645
https://doi.org/10.1021/acs.macromol.9b01645
https://doi.org/10.1021/acs.macromol.9b01645
https://doi.org/10.1021/acs.macromol.9b01645
https://doi.org/10.1039/c3ra46756b
https://doi.org/10.1039/c3ra46756b
https://doi.org/10.1039/b801249k
https://doi.org/10.1039/b801249k
https://doi.org/10.1021/acs.macromol.0c00388
https://doi.org/10.1021/acs.macromol.0c00388
https://doi.org/10.1021/nn402072d
https://doi.org/10.1021/nn402072d
https://doi.org/10.1021/nn402072d
https://doi.org/10.1016/j.biomaterials.2011.11.019
https://doi.org/10.1016/j.biomaterials.2011.11.019
https://doi.org/10.1021/bm2006906
https://doi.org/10.1021/bm2006906
https://doi.org/10.1021/bm2006906
https://doi.org/10.1016/j.jconrel.2010.03.016
https://doi.org/10.1016/j.jconrel.2010.03.016
https://doi.org/10.1016/j.jconrel.2015.07.011
https://doi.org/10.1016/j.jconrel.2015.07.011
https://doi.org/10.1021/nn102540y
https://doi.org/10.1021/nn102540y
https://doi.org/10.1021/nn102540y
https://doi.org/10.1016/j.biomaterials.2011.01.006
https://doi.org/10.1016/j.biomaterials.2011.01.006
https://doi.org/10.1016/j.biomaterials.2011.01.006
https://doi.org/10.1021/acs.molpharmaceut.5b00933
https://doi.org/10.1021/acs.molpharmaceut.5b00933
https://doi.org/10.1021/ma802020a
https://doi.org/10.1021/ma802020a
https://doi.org/10.1021/ma802020a
https://doi.org/10.1021/ma9026806
https://doi.org/10.1021/ma9026806
https://doi.org/10.1002/jgm.3101
https://doi.org/10.1002/jgm.3101
https://doi.org/10.1002/jgm.3101
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


(682) Jiang, Y.; Lodge, T. P.; Reineke, T. M. Packaging pDNA by
Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability
and Structural Control. J. Am. Chem. Soc. 2018, 140, 11101−11111.
(683) Laaser, J. E.; Jiang, Y.; Petersen, S. R.; Reineke, T. M.; Lodge,
T. P. Interpolyelectrolyte Complexes of Polycationic Micelles and
Linear Polyanions: Structural Stability and Temporal Evolution. J.
Phys. Chem. B 2015, 119, 15919−15928.
(684) Sprouse, D.; Jiang, Y.; Laaser, J. E.; Lodge, T. P.; Reineke, T.
M. Tuning Cationic Block Copolymer Micelle Size by pH and Ionic
Strength. Biomacromolecules 2016, 17, 2849−2859.
(685) Jiang, Y.; Reineke, T. M.; Lodge, T. P. Complexation of DNA
with Cationic Copolymer Micelles: Effects of DNA Length and
Topology. Macromolecules 2018, 51, 1150−1160.
(686) Cheng, C.; Convertine, A. J.; Stayton, P. S.; Bryers, J. D.
Multifunctional Triblock Copolymers for Intracellular Messenger
RNA Delivery. Biomaterials 2012, 33, 6868−6876.
(687) Nam, K.; Nam, H. Y.; Kim, P.-H.; Kim, S. W. Paclitaxel-
Conjugated PEG and Arginine-Grafted Bioreducible Poly (Disulfide
Amine) Micelles for Co-Delivery of Drug and Gene. Biomaterials
2012, 33, 8122−8130.
(688) Peng, B.; Chen, Y.; Leong, K. W. MicroRNA Delivery for
Regenerative Medicine. Adv. Drug Delivery Rev. 2015, 88, 108−122.
(689) Pereira-Silva, M.; Jarak, I.; Santos, A. C.; Veiga, F.; Figueiras,
A. Micelleplex-Based Nucleic Acid Therapeutics: From Targeted
Stimuli-Responsiveness to Nanotoxicity and Regulation. Eur. J. Pharm.
Sci. 2020, 153, 105461.
(690) Zhang, R.; Wang, Y.; Du, F.-S.; Wang, Y.-L.; Tan, Y.-X.; Ji, S.-
P.; Li, Z.-C. Thermoresponsive Gene Carriers Based on Poly-
ethylenimine -Graft- Poly[Oligo(Ethylene Glycol) Methacrylate].
Macromol. Biosci. 2011, 11, 1393−1406.
(691) Yang, Y.; Zhao, H.; Jia, Y.; Guo, Q.; Qu, Y.; Su, J.; Lu, X.;
Zhao, Y.; Qian, Z. A Novel Gene Delivery Composite System Based
on Biodegradable Folate-Poly (Ester Amine) Polymer and Thermo-
sensitive Hydrogel for Sustained Gene Release. Sci. Rep. 2016, 6,
21402.
(692) Li, J.; Zha, Z.; Ge, Z. Thermo-Responsive Polyplex Micelles
with PEG Shells and PNIPAM Layer to Protect DNA Cores for
Systemic Gene Therapy. In Methods in Molecular Biology; Humana
Press Inc., 2016; Vol. 1445, pp 269−276.
(693) Li, Y.; Li, J.; Chen, B.; Chen, Q.; Zhang, G.; Liu, S.; Ge, Z.
Polyplex Micelles with Thermoresponsive Heterogeneous Coronas
for Prolonged Blood Retention and Promoted Gene Transfection.
Biomacromolecules 2014, 15, 2914−2923.
(694) Foster, A. A.; Greco, C. T.; Green, M. D.; Epps, T. H.;
Sullivan, M. O. Light-Mediated Activation of siRNA Release in
Diblock Copolymer Assemblies for Controlled Gene Silencing. Adv.
Healthcare Mater. 2015, 4, 760−770.
(695) Chen, W.; Deng, W.; Xu, X.; Zhao, X.; Vo, J. N.; Anwer, A. G.;
Williams, T. C.; Cui, H.; Goldys, E. M. Photoresponsive Endosomal
Escape Enhances Gene Delivery Using Liposome-Polycation-DNA
(LPD) Nanovectors. J. Mater. Chem. B 2018, 6, 5269−5281.
(696) Zhou, Q.-H.; Miller, D. L.; Carlisle, R. C.; Seymour, L. W.;
Oupicky, D. Ultrasound-Enhanced Transfection Activity of HPMA-
Stabilized DNA Polyplexes with Prolonged Plasma Circulation. J.
Controlled Release 2005, 106, 416−427.
(697) Tan, J.-K. Y.; Pham, B.; Zong, Y.; Perez, C.; Maris, D. O.;
Hemphill, A.; Miao, C. H.; Matula, T. J.; Mourad, P. D.; Wei, H.;
et al. Microbubbles and Ultrasound Increase Intraventricular Polyplex
Gene Transfer to the Brain. J. Controlled Release 2016, 231, 86−93.
(698) Ripoll, M.; Neuberg, P.; Kichler, A.; Tounsi, N.; Wagner, A.;
Remy, J.-S. S. pH-Responsive Nanometric Polydiacetylenic Micelles
Allow for Efficient Intracellular siRNA Delivery. ACS Appl. Mater.
Interfaces 2016, 8, 30665−30670.
(699) Guan, X.; Guo, Z.; Lin, L.; Chen, J.; Tian, H.; Chen, X.
Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene
Delivery System. Nano Lett. 2016, 16, 6823−6831.
(700) Chen, J.; Wang, K.; Wu, J.; Tian, H.; Chen, X. Polycations for
Gene Delivery: Dilemmas and Solutions. Bioconjugate Chem. 2019,
30, 338−349.

(701) Deirram, N.; Zhang, C.; Kermaniyan, S. S.; Johnston, A. P. R.;
Such, G. K. pH-Responsive Polymer Nanoparticles for Drug Delivery.
Macromol. Rapid Commun. 2019, 40, 1800917−1800940.
(702) Zhang, M.; Weng, Y.; Cao, Z.; Guo, S.; Hu, B.; Lu, M.; Guo,
W.; Yang, T.; Li, C.; Yang, X.; et al. ROS-Activatable siRNA-
Engineered Polyplex for NIR-Triggered Synergistic Cancer Treat-
ment. ACS Appl. Mater. Interfaces 2020, 12, 32289−32300.
(703) Xiang, J.; Liu, X.; Zhou, Z.; Zhu, D.; Zhou, Q.; Piao, Y.; Jiang,
L.; Tang, J.; Liu, X.; Shen, Y. Reactive Oxygen Species (ROS)-
Responsive Charge-Switchable Nanocarriers for Gene Therapy of
Metastatic Cancer. ACS Appl. Mater. Interfaces 2018, 10, 43352−
43362.
(704) Zhang, W.; Zhou, Y.; Li, X.; Xu, X.; Chen, Y.; Zhu, R.; Yin, L.
Macrophage-Targeting and Reactive Oxygen Species (ROS)-
Responsive Nanopolyplexes Mediate Anti-Inflammatory siRNA
Delivery against Acute Liver Failure (ALF). Biomater. Sci. 2018, 6,
1986−1993.
(705) Deng, Q.; Li, X.; Zhu, L.; He, H.; Chen, D.; Chen, Y.; Yin, L.
Serum-Resistant, Reactive Oxygen Species (ROS)-Potentiated Gene
Delivery in Cancer Cells Mediated by Fluorinated, Diselenide-
Crosslinked Polyplexes. Biomater. Sci. 2017, 5, 1174−1182.
(706) Li, Y.; Bai, H.; Wang, H.; Shen, Y.; Tang, G.; Ping, Y. Reactive
Oxygen Species (ROS)-Responsive Nanomedicine for RNAi-Based
Cancer Therapy. Nanoscale 2018, 10, 203−214.
(707) Jiang, X.-C.; Xiang, J.-J.; Wu, H.-H.; Zhang, T.-Y.; Zhang, D.-
P.; Xu, Q.-H.; Huang, X.-L.; Kong, X.-L.; Sun, J.-H.; Hu, Y.-L.; et al.
Neural Stem Cells Transfected with Reactive Oxygen Species-
Responsive Polyplexes for Effective Treatment of Ischemic Stroke.
Adv. Mater. 2019, 31, 1807591−1807599.
(708) Qiu, N.; Gao, J.; Liu, Q.; Wang, J.; Shen, Y. Enzyme-
Responsive Charge-Reversal Polymer-Mediated Effective Gene
Therapy for Intraperitoneal Tumors. Biomacromolecules 2018, 19,
2308−2319.
(709) Tsuchiya, A.; Naritomi, Y.; Kushio, S.; Kang, J.-H.; Murata,
M.; Hashizume, M.; Mori, T.; Niidome, T.; Katayama, Y. Improve-
ment in the Colloidal Stability of Protein Kinase-Responsive
Polyplexes by PEG Modification. J. Biomed. Mater. Res., Part A
2012, 100A, 1136−1141.
(710) Lee, Y. S.; Kim, S. W. Bioreducible Polymers for Therapeutic
Gene Delivery. J. Controlled Release 2014, 190, 424−439.
(711) Zhang, X.; Han, L.; Liu, M.; Wang, K.; Tao, L.; Wan, Q.; Wei,
Y. Recent Progress and Advances in Redox-Responsive Polymers as
Controlled Delivery Nanoplatforms. Mater. Chem. Front. 2017, 1,
807−822.
(712) Ryu, K.; Kim, T. Therapeutic Gene Delivery Using
Bioreducible Polymers. Arch. Pharmacal Res. 2014, 37, 31−42.
(713) Liu, Y.; Xu, C.-F.; Iqbal, S.; Yang, X.-Z.; Wang, J. Responsive
Nanocarriers as an Emerging Platform for Cascaded Delivery of
Nucleic Acids to Cancer. Adv. Drug Delivery Rev. 2017, 115, 98−114.
(714) Sun, M.; Wang, K.; Oupicky,́ D. Advances in Stimulus-
Responsive Polymeric Materials for Systemic Delivery of Nucleic
Acids. Adv. Healthcare Mater. 2018, 7, 1701070.
(715) Shim, M. S.; Kwon, Y. J. Stimuli-Responsive Polymers and
Nanomaterials for Gene Delivery and Imaging Applications. Adv.
Drug Delivery Rev. 2012, 64, 1046−1059.
(716) Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood Flow, Oxygen
and Nutrient Supply, and Metabolic Microenvironment of Human
Tumors: A Review. Cancer Res. 1989, 49, 6449−6465.
(717) Wu, M. M.; Llopis, J.; Adams, S.; McCaffery, J. M.; Kulomaa,
M. S.; Machen, T. E.; Moore, H. P. H.; Tsien, R. Y. Organelle pH
Studies Using Targeted Avidin and Fluorescein-Biotin. Chem. Biol.
2000, 7, 197−209.
(718) Hu, Y.-B.; Dammer, E. B.; Ren, R.-J.; Wang, G. The
Endosomal-Lysosomal System: From Acidification and Cargo Sorting
to Neurodegeneration. Transl. Neurodegener. 2015, 4, 18−28.
(719) Olden, B. R.; Cheng, E.; Cheng, Y.; Pun, S. H. Identifying Key
Barriers in Cationic Polymer Gene Delivery to Human T Cells.
Biomater. Sci. 2019, 7, 789−797.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

CZ

https://doi.org/10.1021/jacs.8b06309
https://doi.org/10.1021/jacs.8b06309
https://doi.org/10.1021/jacs.8b06309
https://doi.org/10.1021/acs.jpcb.5b09010
https://doi.org/10.1021/acs.jpcb.5b09010
https://doi.org/10.1021/acs.biomac.6b00654
https://doi.org/10.1021/acs.biomac.6b00654
https://doi.org/10.1021/acs.macromol.7b02201
https://doi.org/10.1021/acs.macromol.7b02201
https://doi.org/10.1021/acs.macromol.7b02201
https://doi.org/10.1016/j.biomaterials.2012.06.020
https://doi.org/10.1016/j.biomaterials.2012.06.020
https://doi.org/10.1016/j.biomaterials.2012.07.031
https://doi.org/10.1016/j.biomaterials.2012.07.031
https://doi.org/10.1016/j.biomaterials.2012.07.031
https://doi.org/10.1016/j.addr.2015.05.014
https://doi.org/10.1016/j.addr.2015.05.014
https://doi.org/10.1016/j.ejps.2020.105461
https://doi.org/10.1016/j.ejps.2020.105461
https://doi.org/10.1002/mabi.201100094
https://doi.org/10.1002/mabi.201100094
https://doi.org/10.1038/srep21402
https://doi.org/10.1038/srep21402
https://doi.org/10.1038/srep21402
https://doi.org/10.1021/bm500532x
https://doi.org/10.1021/bm500532x
https://doi.org/10.1002/adhm.201400671
https://doi.org/10.1002/adhm.201400671
https://doi.org/10.1039/C8TB00994E
https://doi.org/10.1039/C8TB00994E
https://doi.org/10.1039/C8TB00994E
https://doi.org/10.1016/j.jconrel.2005.05.002
https://doi.org/10.1016/j.jconrel.2005.05.002
https://doi.org/10.1016/j.jconrel.2016.02.003
https://doi.org/10.1016/j.jconrel.2016.02.003
https://doi.org/10.1021/acsami.6b09365
https://doi.org/10.1021/acsami.6b09365
https://doi.org/10.1021/acs.nanolett.6b02536
https://doi.org/10.1021/acs.nanolett.6b02536
https://doi.org/10.1021/acs.bioconjchem.8b00688
https://doi.org/10.1021/acs.bioconjchem.8b00688
https://doi.org/10.1002/marc.201800917
https://doi.org/10.1021/acsami.0c06614
https://doi.org/10.1021/acsami.0c06614
https://doi.org/10.1021/acsami.0c06614
https://doi.org/10.1021/acsami.8b13291
https://doi.org/10.1021/acsami.8b13291
https://doi.org/10.1021/acsami.8b13291
https://doi.org/10.1039/C8BM00389K
https://doi.org/10.1039/C8BM00389K
https://doi.org/10.1039/C8BM00389K
https://doi.org/10.1039/C7BM00334J
https://doi.org/10.1039/C7BM00334J
https://doi.org/10.1039/C7BM00334J
https://doi.org/10.1039/C7NR06689A
https://doi.org/10.1039/C7NR06689A
https://doi.org/10.1039/C7NR06689A
https://doi.org/10.1002/adma.201807591
https://doi.org/10.1002/adma.201807591
https://doi.org/10.1021/acs.biomac.8b00440
https://doi.org/10.1021/acs.biomac.8b00440
https://doi.org/10.1021/acs.biomac.8b00440
https://doi.org/10.1002/jbm.a.34049
https://doi.org/10.1002/jbm.a.34049
https://doi.org/10.1002/jbm.a.34049
https://doi.org/10.1016/j.jconrel.2014.04.012
https://doi.org/10.1016/j.jconrel.2014.04.012
https://doi.org/10.1039/C6QM00135A
https://doi.org/10.1039/C6QM00135A
https://doi.org/10.1007/s12272-013-0275-3
https://doi.org/10.1007/s12272-013-0275-3
https://doi.org/10.1016/j.addr.2017.03.004
https://doi.org/10.1016/j.addr.2017.03.004
https://doi.org/10.1016/j.addr.2017.03.004
https://doi.org/10.1002/adhm.201701070
https://doi.org/10.1002/adhm.201701070
https://doi.org/10.1002/adhm.201701070
https://doi.org/10.1016/j.addr.2012.01.018
https://doi.org/10.1016/j.addr.2012.01.018
https://doi.org/10.1016/S1074-5521(00)00088-0
https://doi.org/10.1016/S1074-5521(00)00088-0
https://doi.org/10.1186/s40035-015-0041-1
https://doi.org/10.1186/s40035-015-0041-1
https://doi.org/10.1186/s40035-015-0041-1
https://doi.org/10.1039/C8BM01262H
https://doi.org/10.1039/C8BM01262H
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


(720) Tian, H.; Guo, Z.; Lin, L.; Jiao, Z.; Chen, J.; Gao, S.; Zhu, X.;
Chen, X. pH-Responsive Zwitterionic Copolypeptides as Charge
Conversional Shielding System for Gene Carriers. J. Controlled Release
2014, 174, 117−125.
(721) Park, I.; Singha, K.; Arote, R. B.; Choi, Y.; Kim, W. J.; Cho, C.
pH-Responsive Polymers as Gene Carriers. Macromol. Rapid
Commun. 2010, 31, 1122−1133.
(722) Ou, M.; Xu, R.; Kim, S. H.; Bull, D. A.; Kim, S. W. A Family of
Bioreducible Poly(Disulfide Amine)s for Gene Delivery. Biomaterials
2009, 30, 5804−5814.
(723) Miyata, K.; Oba, M.; Nakanishi, M.; Fukushima, S.; Yamasaki,
Y.; Koyama, H.; Nishiyama, N.; Kataoka, K. Polyplexes from
Poly(Aspartamide) Bearing 1,2-Diaminoethane Side Chains Induce
pH-Selective, Endosomal Membrane Destabilization with Amplified
Transfection and Negligible Cytotoxicity. J. Am. Chem. Soc. 2008, 130,
16287−16294.
(724) Reijenga, J.; van Hoof, A.; van Loon, A.; Teunissen, B.
Development of Methods for the Determination of pKa Values. Anal.
Chem. Insights 2013, 8, 53−71.
(725) Rabenstein, D. L.; Sayer, T. L. Determination of Microscopic
Acid Dissociation Constants by Nuclear Magnetic Resonance
Spectrometry. Anal. Chem. 1976, 48, 1141−1146.
(726) Bodnarchuk, M. S.; Doncom, K. E. B.; Wright, D. B.; Heyes,
D. M.; Dini, D.; O’Reilly, R. K. Polyelectrolyte PK a from Experiment
and Molecular Dynamics Simulation. RSC Adv. 2017, 7, 20007−
20014.
(727) Yen, M. R.; Chen, J. S.; Marquez, J. L.; Sun, E. I.; Saier, M. H.
Multidrug Resistance: Phylogenetic Characterization of Superfamilies
of Secondary Carriers That Include Drug Exporters. Methods Mol.
Biol. (N. Y., NY, U. S.) 2010, 637, 47−64.
(728) Han, J.; Burgess, K. Fluorescent Indicators for Intracellular
pH. Chem. Rev. 2010, 110, 2709−2728.
(729) Yang, Z.; Li, Y.; Gao, J.; Cao, Z.; Jiang, Q.; Liu, J. pH and
Redox Dual-Responsive Multifunctional Gene Delivery with En-
hanced Capability of Transporting DNA into the Nucleus. Colloids
Surf., B 2017, 153, 111−122.
(730) Xiong, M. P.; Bae, Y.; Fukushima, S.; Forrest, M. L.;
Nishiyama, N.; Kataoka, K.; Kwon, G. S. pH-Responsive Multi-
PEGylated Dual Cationic Nanoparticles Enable Charge Modulations
for Safe Gene Delivery. ChemMedChem 2007, 2, 1321−1327.
(731) Benns, J. M.; Choi, J. S.; Mahato, R. I.; Park, J. S.; Kim, S. W.
pH-Sensitive Cationic Polymer Gene Delivery Vehicle: N-Ac-Poly(L-
Histidine)-Graft-Poly(L-Lysine) Comb Shaped Polymer. Bioconjugate
Chem. 2000, 11, 637−645.
(732) Cheng, Y.; Yumul, R. C.; Pun, S. H. Virus-Inspired Polymer
for Efficient in Vitro and in Vivo Gene Delivery. Angew. Chem., Int. Ed.
2016, 55, 12013−12017.
(733) Song, Y.; Wang, H.; Zeng, X.; Sun, Y.; Zhang, X.; Zhou, J.;
Zhang, L. Effect of Molecular Weight and Degree of Substitution of
Quaternized Cellulose on the Efficiency of Gene Transfection.
Bioconjugate Chem. 2010, 21, 1271−1279.
(734) He, H.; Bai, Y.; Wang, J.; Deng, Q.; Zhu, L.; Meng, F.; Zhong,
Z.; Yin, L. Reversibly Cross-Linked Polyplexes Enable Cancer-
Targeted Gene Delivery via Self-Promoted DNA Release and Self-
Diminished Toxicity. Biomacromolecules 2015, 16, 1390−1400.
(735) Xu, C.; Guan, X.; Lin, L.; Wang, Q.; Gao, B.; Zhang, S.; Li, Y.;
Tian, H. pH-Responsive Natural Polymeric Gene Delivery Shielding
System Based on Dynamic Covalent Chemistry. ACS Biomater. Sci.
Eng. 2018, 4, 193−199.
(736) Zhou, Q.; Wang, Y.; Xiang, J.; Piao, Y.; Zhou, Z.; Tang, J.; Liu,
X.; Shen, Y. Stabilized Calcium Phosphate Hybrid Nanocomposite
Using a Benzoxaborole-Containing Polymer for pH-Responsive
siRNA Delivery. Biomater. Sci. 2018, 6, 3178−3188.
(737) Sethuraman, V. A.; Na, K.; Bae, Y. H. pH-Responsive
Sulfonamide/PEI System for Tumor Specific Gene Delivery: An in
Vitro Study. Biomacromolecules 2006, 7, 64−70.
(738) Olden, B. R.; Cheng, Y.; Yu, J. L.; Pun, S. H. Cationic
Polymers for Non-Viral Gene Delivery to Human T Cells. J.
Controlled Release 2018, 282, 140−147.

(739) Nogueira, D.; Mitjans, M.; Vinardell, M. Nanotechnology
Approaches to Target Endosomal pH: A Promising Strategy for an
Efficient Intracellular Drug, Gene and Protein Delivery. Drug Delivery
Lett. 2014, 4, 2−11.
(740) Nouri, F. S.; Wang, X.; Dorrani, M.; Karjoo, Z.; Hatefi, A. A
Recombinant Biopolymeric Platform for Reliable Evaluation of the
Activity of pH-Responsive Amphiphile Fusogenic Peptides. Bio-
macromolecules 2013, 14, 2033−2040.
(741) Wagner, E.; Plank, C.; Zatloukal, K.; Cotten, M.; Birnstiel, M.
A. X. L. Influenza Virus Hemagglutinin HA-2 N-Terminal Fusogenic
Peptides Augment Gene Transfer by Transferrin-Polylysine-DNA
Complexes: Toward a Synthetic Virus-like Gene-Transfer Vehicle.
Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 7934−7938.
(742) Subbarao, N. K.; Parente, R. A.; Szoka, F. C.; Nadasdi, L.;
Pongracz, K. The pH-Dependent Bilayer Destabilization by an
Amphipathic Peptide. Biochemistry 1987, 26, 2964−2972.
(743) Li, W. GALA: A Designed Synthetic pH-Responsive
Amphipathic Peptide with Applications in Drug and Gene Delivery.
Adv. Drug Delivery Rev. 2004, 56, 967−985.
(744) Lou, B.; De Koker, S.; Lau, C. Y. J.; Hennink, W. E.;
Mastrobattista, E. mRNA Polyplexes with Post-Conjugated GALA
Peptides Efficiently Target, Transfect, and Activate Antigen
Presenting Cells. Bioconjugate Chem. 2019, 30, 461−475.
(745) Sato, Y.; Hatakeyama, H.; Sakurai, Y.; Hyodo, M.; Akita, H.;
Harashima, H. A pH-Sensitive Cationic Lipid Facilitates the Delivery
of Liposomal siRNA and Gene Silencing Activity in Vitro and in Vivo.
J. Controlled Release 2012, 163, 267−276.
(746) Abd Elwakil, M. M.; Khalil, I. A.; Elewa, Y. H. A.; Kusumoto,
K.; Sato, Y.; Shobaki, N.; Kon, Y.; Harashima, H. Lung-Endothelium-
Targeted Nanoparticles Based on a pH-Sensitive Lipid and the GALA
Peptide Enable Robust Gene Silencing and the Regression of
Metastatic Lung Cancer. Adv. Funct. Mater. 2019, 29, 1807677.
(747) Wan, Y.; Dai, W.; Nevagi, R. J.; Toth, I.; Moyle, P. M.
Multifunctional Peptide-Lipid Nanocomplexes for Efficient Targeted
Delivery of DNA and siRNA into Breast Cancer Cells. Acta Biomater.
2017, 59, 257−268.
(748) Peeler, D. J.; Thai, S. N.; Cheng, Y.; Horner, P. J.; Sellers, D.
L.; Pun, S. H. pH-Sensitive Polymer Micelles Provide Selective and
Potentiated Lytic Capacity to Venom Peptides for Effective
Intracellular Delivery. Biomaterials 2019, 192, 235−244.
(749) Ooi, Y. J.; Wen, Y.; Zhu, J.; Song, X.; Li, J. Surface Charge
Switchable Polymer/DNA Nanoparticles Responsive to Tumor
Extracellular pH for Tumor-Triggered Enhanced Gene Delivery.
Biomacromolecules 2020, 21, 1136−1148.
(750) Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L.
Dysregulated pH: A Perfect Storm for Cancer Progression. Nat. Rev.
Cancer 2011, 11, 671−677.
(751) Guo, A.; Wang, Y.; Xu, S.; Zhang, X.; Li, M.; Liu, Q.; Shen, Y.;
Cui, D.; Guo, S. Preparation and Evaluation of pH -Responsive
Charge-Convertible Ternary Complex FA-PEI-CCA/PEI/DNA with
Low Cytotoxicity and Efficient Gene Delivery. Colloids Surf., B 2017,
152, 58−67.
(752) Chen, J.; Guo, Z.; Jiao, Z.; Lin, L.; Xu, C.; Tian, H.; Chen, X.
Poly(l-Glutamic Acid)-Based Zwitterionic Polymer in a Charge
Conversional Shielding System for Gene Therapy of Malignant
Tumors. ACS Appl. Mater. Interfaces 2020, 12, 19295−19306.
(753) Yoon, S. R.; Yang, H. M.; Park, C. W.; Lim, S.; Chung, B. H.;
Kim, J. D. Charge-Conversional Poly(Amino Acid)s Derivatives as a
Drug Delivery Carrier in Response to the Tumor Environment. J.
Biomed. Mater. Res., Part A 2012, 100A, 2027−2033.
(754) Du, J.-Z.; Sun, T.-M.; Song, W.-J.; Wu, J.; Wang, J. A Tumor-
Acidity-Activated Charge-Conversional Nanogel as an Intelligent
Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery.
Angew. Chem., Int. Ed. 2010, 49, 3621−3626.
(755) Han, S. S.; Li, Z. Y.; Zhu, J. Y.; Han, K.; Zeng, Z. Y.; Hong,
W.; Li, W. X.; Jia, H. Z.; Liu, Y.; Zhuo, R. X.; et al. Dual-pH Sensitive
Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting
Uptake and Nuclear Drug Delivery. Small 2015, 11, 2543−2554.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

DA

https://doi.org/10.1016/j.jconrel.2013.11.008
https://doi.org/10.1016/j.jconrel.2013.11.008
https://doi.org/10.1002/marc.200900867
https://doi.org/10.1016/j.biomaterials.2009.06.050
https://doi.org/10.1016/j.biomaterials.2009.06.050
https://doi.org/10.1021/ja804561g
https://doi.org/10.1021/ja804561g
https://doi.org/10.1021/ja804561g
https://doi.org/10.1021/ja804561g
https://doi.org/10.4137/ACI.S12304
https://doi.org/10.1021/ac50002a019
https://doi.org/10.1021/ac50002a019
https://doi.org/10.1021/ac50002a019
https://doi.org/10.1039/C6RA27785C
https://doi.org/10.1039/C6RA27785C
https://doi.org/10.1007/978-1-60761-700-6_3
https://doi.org/10.1007/978-1-60761-700-6_3
https://doi.org/10.1021/cr900249z
https://doi.org/10.1021/cr900249z
https://doi.org/10.1016/j.colsurfb.2017.02.016
https://doi.org/10.1016/j.colsurfb.2017.02.016
https://doi.org/10.1016/j.colsurfb.2017.02.016
https://doi.org/10.1002/cmdc.200700093
https://doi.org/10.1002/cmdc.200700093
https://doi.org/10.1002/cmdc.200700093
https://doi.org/10.1021/bc0000177
https://doi.org/10.1021/bc0000177
https://doi.org/10.1002/anie.201605958
https://doi.org/10.1002/anie.201605958
https://doi.org/10.1021/bc100068f
https://doi.org/10.1021/bc100068f
https://doi.org/10.1021/acs.biomac.5b00180
https://doi.org/10.1021/acs.biomac.5b00180
https://doi.org/10.1021/acs.biomac.5b00180
https://doi.org/10.1021/acsbiomaterials.7b00869
https://doi.org/10.1021/acsbiomaterials.7b00869
https://doi.org/10.1039/C8BM00575C
https://doi.org/10.1039/C8BM00575C
https://doi.org/10.1039/C8BM00575C
https://doi.org/10.1021/bm0503571
https://doi.org/10.1021/bm0503571
https://doi.org/10.1021/bm0503571
https://doi.org/10.1016/j.jconrel.2018.02.043
https://doi.org/10.1016/j.jconrel.2018.02.043
https://doi.org/10.2174/221030310401140410115042
https://doi.org/10.2174/221030310401140410115042
https://doi.org/10.2174/221030310401140410115042
https://doi.org/10.1021/bm400380s
https://doi.org/10.1021/bm400380s
https://doi.org/10.1021/bm400380s
https://doi.org/10.1073/pnas.89.17.7934
https://doi.org/10.1073/pnas.89.17.7934
https://doi.org/10.1073/pnas.89.17.7934
https://doi.org/10.1021/bi00385a002
https://doi.org/10.1021/bi00385a002
https://doi.org/10.1016/j.addr.2003.10.041
https://doi.org/10.1016/j.addr.2003.10.041
https://doi.org/10.1021/acs.bioconjchem.8b00524
https://doi.org/10.1021/acs.bioconjchem.8b00524
https://doi.org/10.1021/acs.bioconjchem.8b00524
https://doi.org/10.1016/j.jconrel.2012.09.009
https://doi.org/10.1016/j.jconrel.2012.09.009
https://doi.org/10.1002/adfm.201807677
https://doi.org/10.1002/adfm.201807677
https://doi.org/10.1002/adfm.201807677
https://doi.org/10.1002/adfm.201807677
https://doi.org/10.1016/j.actbio.2017.06.032
https://doi.org/10.1016/j.actbio.2017.06.032
https://doi.org/10.1016/j.biomaterials.2018.11.004
https://doi.org/10.1016/j.biomaterials.2018.11.004
https://doi.org/10.1016/j.biomaterials.2018.11.004
https://doi.org/10.1021/acs.biomac.9b01521
https://doi.org/10.1021/acs.biomac.9b01521
https://doi.org/10.1021/acs.biomac.9b01521
https://doi.org/10.1038/nrc3110
https://doi.org/10.1016/j.colsurfb.2017.01.007
https://doi.org/10.1016/j.colsurfb.2017.01.007
https://doi.org/10.1016/j.colsurfb.2017.01.007
https://doi.org/10.1021/acsami.0c02769
https://doi.org/10.1021/acsami.0c02769
https://doi.org/10.1021/acsami.0c02769
https://doi.org/10.1002/jbm.a.34048
https://doi.org/10.1002/jbm.a.34048
https://doi.org/10.1002/anie.200907210
https://doi.org/10.1002/anie.200907210
https://doi.org/10.1002/anie.200907210
https://doi.org/10.1002/smll.201402865
https://doi.org/10.1002/smll.201402865
https://doi.org/10.1002/smll.201402865
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


(756) Mok, H.; Veiseh, O.; Fang, C.; Kievit, F. M.; Wang, F. Y.;
Park, J. O.; Zhang, M. pH-Sensitive siRNA Nanovector for Targeted
Gene Silencing and Cytotoxic Effect in Cancer Cells. Mol.
Pharmaceutics 2010, 7, 1930−1939.
(757) Anees, P.; Zhao, Y.; Greschner, A. A.; Congdon, T. R.; de
Haan, H. W.; Cottenye, N.; Gauthier, M. A. Evidence, Manipulation,
and Termination of pH ‘Nanobuffering’ for Quantitative Homoge-
nous Scavenging of Monoclonal Antibodies. ACS Nano 2019, 13,
1019−1028.
(758) Tao, W.; Wang, J.; Parak, W. J.; Farokhzad, O. C.; Shi, J.
Nanobuffering of pH-Responsive Polymers: A Known but Sometimes
Overlooked Phenomenon and Its Biological Applications. ACS Nano
2019, 13, 4876−4882.
(759) Chin, A. L.; Zhong, Y.; Tong, R. Emerging Strategies in Near-
Infrared Light Triggered Drug Delivery Using Organic Nanomaterials.
Biomater. Sci. 2017, 5, 1491−1499.
(760) Zhou, Y.; Ye, H.; Chen, Y.; Zhu, R.; Yin, L. Photoresponsive
Drug/Gene Delivery Systems. Biomacromolecules 2018, 19, 1840−
1857.
(761) Romano, A.; Roppolo, I.; Giebler, M.; Dietliker, K.; Mozǐna,
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Santamaría, J.; Vilaboa, N. Size-Dependent Transfection Efficiency of
PEI-Coated Gold Nanoparticles. Acta Biomater. 2011, 7, 3645−3655.
(1068) Ahmed, M.; Deng, Z.; Narain, R. Study of Transfection
Efficiencies of Cationic Glyconanoparticles of Different Sizes in
Human Cell Line. ACS Appl. Mater. Interfaces 2009, 1, 1980−1987.
(1069) Huo, S.; Jin, S.; Ma, X.; Xue, X.; Yang, K.; Kumar, A.; Wang,
P. C.; Zhang, J.; Hu, Z.; Liang, X. J. Ultrasmall Gold Nanoparticles as
Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent
Nuclear Entry. ACS Nano 2014, 8, 5852−5862.
(1070) Wang, Y.; Cui, Y.; Zhao, Y.; Zhao, Q.; He, B.; Zhang, Q.;
Wang, S. Effects of Surface Modification and Size on Oral Drug
Delivery of Mesoporous Silica Formulation. J. Colloid Interface Sci.
2018, 513, 736−747.
(1071) Song, H.; Yu, M.; Lu, Y.; Gu, Z.; Yang, Y.; Zhang, M.; Fu, J.;
Yu, C. Plasmid DNA Delivery: Nanotopography Matters. J. Am.
Chem. Soc. 2017, 139, 18247−18254.
(1072) Yu, M.; Niu, Y.; Zhang, J.; Zhang, H.; Yang, Y.; Taran, E.;
Jambhrunkar, S.; Gu, W.; Thorn, P.; Yu, C. Size-Dependent Gene
Delivery of Amine-Modified Silica Nanoparticles. Nano Res. 2016, 9,
291−305.
(1073) Dohmen, C.; Edinger, D.; Fröhlich, T.; Schreiner, L.;
Lächelt, U.; Troiber, C.; Rädler, J.; Hadwiger, P.; Vornlocher, H. P.;
Wagner, E. Nanosized Multifunctional Polyplexes for Receptor-
Mediated siRNA Delivery. ACS Nano 2012, 6, 5198−5208.
(1074) Choi, H. S.; Kim, H. H.; Yang, J. M.; Shin, S. An Insight into
the Gene Delivery Mechanism of the Arginine Peptide System: Role
of the Peptide/DNA Complex Size. Biochim. Biophys. Acta, Gen. Subj.
2006, 1760, 1604−1612.
(1075) Zhang, J.; Lei, Y.; Dhaliwal, A.; Ng, Q. K. T.; Du, J.; Yan, M.;
Lu, Y.; Segura, T. Protein-Polymer Nanoparticles for Nonviral Gene
Delivery. Biomacromolecules 2011, 12, 1006−1014.
(1076) Mendrek, B.; Sieron,́ L.; Libera, M.; Smet, M.; Trzebicka, B.;
Sieron,́ A. L.; Dworak, A.; Kowalczuk, A. Polycationic Star Polymers
with Hyperbranched Cores for Gene Delivery. Polymer 2014, 55,
4551−4562.
(1077) Sizovs, A.; Song, X.; Waxham, M. N.; Jia, Y.; Feng, F.; Chen,
J.; Wicker, A. C.; Xu, J.; Yu, Y.; Wang, J. Precisely Tunable
Engineering of Sub-30 nm Monodisperse Oligonucleotide Nano-
particles. J. Am. Chem. Soc. 2014, 136, 234−240.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00997
Chem. Rev. XXXX, XXX, XXX−XXX

DJ

https://doi.org/10.1016/j.colsurfb.2018.04.005
https://doi.org/10.1021/nn201950e
https://doi.org/10.1021/nn201950e
https://doi.org/10.1021/nn201950e
https://doi.org/10.1182/blood.V99.3.912
https://doi.org/10.1182/blood.V99.3.912
https://doi.org/10.1016/S0928-0987(97)10019-7
https://doi.org/10.1016/S0928-0987(97)10019-7
https://doi.org/10.1016/S0928-0987(97)10019-7
https://doi.org/10.1038/mt.2009.281
https://doi.org/10.1038/mt.2009.281
https://doi.org/10.1016/j.ymthe.2005.03.038
https://doi.org/10.1016/j.ymthe.2005.03.038
https://doi.org/10.1016/j.ymthe.2005.03.038
https://doi.org/10.1021/acs.chemrev.7b00194
https://doi.org/10.1021/acs.chemrev.7b00194
https://doi.org/10.1080/21688370.2016.1153568
https://doi.org/10.1080/21688370.2016.1153568
https://doi.org/10.1021/acsbiomaterials.0c00743
https://doi.org/10.1021/acsbiomaterials.0c00743
https://doi.org/10.3390/pharmaceutics6040557
https://doi.org/10.3390/pharmaceutics6040557
https://doi.org/10.3390/pharmaceutics6040557
https://doi.org/10.1002/adtp.201900123
https://doi.org/10.1002/adtp.201900123
https://doi.org/10.1002/adtp.201900123
https://doi.org/10.1002/adtp.201900123
https://doi.org/10.1038/s41563-019-0566-2
https://doi.org/10.1038/nnano.2011.166
https://doi.org/10.1038/nnano.2011.166
https://doi.org/10.1021/nn700060m
https://doi.org/10.1021/nn700060m
https://doi.org/10.1021/nn700060m
https://doi.org/10.1021/nn700060m
https://doi.org/10.1021/nn300149c
https://doi.org/10.1021/nn300149c
https://doi.org/10.1021/nn300149c
https://doi.org/10.1016/j.addr.2020.06.005
https://doi.org/10.1016/j.addr.2020.06.005
https://doi.org/10.1016/j.addr.2020.06.005
https://doi.org/10.1021/acsnano.5b01324
https://doi.org/10.1021/acsnano.5b01324
https://doi.org/10.1021/acsnano.5b01324
https://doi.org/10.1038/s41467-018-03705-y
https://doi.org/10.1038/s41467-018-03705-y
https://doi.org/10.1002/adhm.201901223
https://doi.org/10.1002/adhm.201901223
https://doi.org/10.1248/bpb.29.1521
https://doi.org/10.1248/bpb.29.1521
https://doi.org/10.1248/bpb.29.1521
https://doi.org/10.1021/ja808719p
https://doi.org/10.1021/ja808719p
https://doi.org/10.1557/mrs2010.602
https://doi.org/10.1557/mrs2010.602
https://doi.org/10.1557/mrs2010.602
https://doi.org/10.1002/anie.201407946
https://doi.org/10.1002/anie.201407946
https://doi.org/10.1002/smll.201501573
https://doi.org/10.1002/smll.201501573
https://doi.org/10.1002/smll.201501573
https://doi.org/10.1016/j.actbio.2011.06.018
https://doi.org/10.1016/j.actbio.2011.06.018
https://doi.org/10.1021/am900357x
https://doi.org/10.1021/am900357x
https://doi.org/10.1021/am900357x
https://doi.org/10.1021/nn5008572
https://doi.org/10.1021/nn5008572
https://doi.org/10.1021/nn5008572
https://doi.org/10.1016/j.jcis.2017.11.065
https://doi.org/10.1016/j.jcis.2017.11.065
https://doi.org/10.1021/jacs.7b08974
https://doi.org/10.1007/s12274-015-0909-5
https://doi.org/10.1007/s12274-015-0909-5
https://doi.org/10.1021/nn300960m
https://doi.org/10.1021/nn300960m
https://doi.org/10.1016/j.bbagen.2006.09.011
https://doi.org/10.1016/j.bbagen.2006.09.011
https://doi.org/10.1016/j.bbagen.2006.09.011
https://doi.org/10.1021/bm101354a
https://doi.org/10.1021/bm101354a
https://doi.org/10.1016/j.polymer.2014.07.013
https://doi.org/10.1016/j.polymer.2014.07.013
https://doi.org/10.1021/ja408879b
https://doi.org/10.1021/ja408879b
https://doi.org/10.1021/ja408879b
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00997?rel=cite-as&ref=PDF&jav=VoR


(1078) Glodde, M.; Sirsi, S. R.; Lutz, G. J. Physiochemical Properties
of Low and High Molecular Weight Poly(Ethylene Glycol)-Grafted
Poly(Ethylene Imine) Copolymers and Their Complexes with
Oligonucleotides. Biomacromolecules 2006, 7, 347−356.
(1079) Chiper, M.; Tounsi, N.; Kole, R.; Kichler, A.; Zuber, G. Self-
Aggregating 1.8 KDa Polyethylenimines with Dissolution Switch at
Endosomal Acidic pH Are Delivery Carriers for Plasmid DNA,
mRNA, siRNA and Exon-Skipping Oligonucleotides. J. Controlled
Release 2017, 246, 60−70.
(1080) Kim, K.; Hwang, H. S.; Shim, M. S.; Cho, Y.-Y.; Lee, J. Y.;
Lee, H. S.; Kang, H. C. Controlling Complexation/Decomplexation
and Sizes of Polymer-Based Electrostatic pDNA Polyplexes Is One of
the Key Factors in Effective Transfection. Colloids Surf., B 2019, 184,
110497.
(1081) Xu, D. M.; Yao, S. De; Liu, Y. B.; Sheng, K. L.; Hong, J.;
Gong, P. J.; Dong, L. Size-Dependent Properties of M-PEIs Nanogels
for Gene Delivery in Cancer Cells. Int. J. Pharm. 2007, 338, 291−296.
(1082) Liang, S.; Yang, X. Z.; Du, X. J.; Wang, H. X.; Li, H. J.; Liu,
W. W.; Yao, Y. D.; Zhu, Y. H.; Ma, Y. C.; Wang, J.; et al. Optimizing
the Size of Micellar Nanoparticles for Efficient siRNA Delivery. Adv.
Funct. Mater. 2015, 25, 4778−4787.
(1083) Werfel, T. A.; Jackson, M. A.; Kavanaugh, T. E.; Kirkbride, K.
C.; Miteva, M.; Giorgio, T. D.; Duvall, C. Combinatorial
Optimization of PEG Architecture and Hydrophobic Content
Improves Ternary siRNA Polyplex Stability, Pharmacokinetics, and
Potency in Vivo. J. Controlled Release 2017, 255, 12−26.
(1084) McBain, S. C.; Yiu, H. H.; Dobson, J. Magnetic
Nanoparticles for Gene and Drug Delivery. Int. J. Nanomed. 2008,
3, 169−180.
(1085) Chen, X.-J.; Sanchez-Gaytan, B. L.; Qian, Z.; Park, S.-J.
Noble Metal Nanoparticles in DNA Detection and Delivery. Wiley
Interdiscip. Rev. Nanomedicine Nanobiotechnology 2012, 4, 273−290.
(1086) Kumar, P.; Tambe, P.; Paknikar, K. M.; Gajbhiye, V.
Mesoporous Silica Nanoparticles as Cutting-Edge Theranostics:
Advancement from Merely a Carrier to Tailor-Made Smart Delivery
Platform. J. Controlled Release 2018, 287, 35−57.
(1087) Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.;
Huang, Y.; Pan, X.; Wu, C. Mesoporous Silica Nanoparticles for Drug
and Gene Delivery. Acta Pharm. Sin. B 2018, 8, 165−177.
(1088) Molaei, M. J. Carbon Quantum Dots and Their Biomedical
and Therapeutic Applications: A Review. RSC Adv. 2019, 9, 6460−
6481.
(1089) Caoduro, C.; Hervouet, E.; Girard-Thernier, C.; Gharbi, T.;
Boulahdour, H.; Delage-Mourroux, R.; Pudlo, M. Carbon Nanotubes
as Gene Carriers: Focus on Internalization Pathways Related to
Functionalization and Properties. Acta Biomater. 2017, 49, 36−44.
(1090) Gaber, M.; Medhat, W.; Hany, M.; Saher, N.; Fang, J.-Y.;
Elzoghby, A. Protein-Lipid Nanohybrids as Emerging Platforms for
Drug and Gene Delivery: Challenges and Outcomes. J. Controlled
Release 2017, 254, 75−91.
(1091) Wang, H.; Feng, Z.; Xu, B. Supramolecular Assemblies of
Peptides or Nucleopeptides for Gene Delivery. Theranostics 2019, 9,
3213−3222.
(1092) Guo, K.; Zhao, X.; Dai, X.; Zhao, N.; Xu, F. Organic/
Inorganic Nanohybrids as Multifunctional Gene Delivery Systems. J.
Gene Med. 2019, 21, No. e3084.
(1093) Tian, H.; Chen, J.; Chen, X. Nanoparticles for Gene
Delivery. Small 2013, 9, 2034−2044.
(1094) Sokolova, V.; Epple, M. Inorganic Nanoparticles as Carriers
of Nucleic Acids into Cells. Angew. Chem., Int. Ed. 2008, 47, 1382−
1395.
(1095) van Gaal, E. V. B.; Spierenburg, G.; Hennink, W. E.;
Crommelin, D. J. A.; Mastrobattista, E. Flow Cytometry for Rapid
Size Determination and Sorting of Nucleic Acid Containing
Nanoparticles in Biological Fluids. J. Controlled Release 2010, 141,
328−338.
(1096) Troiber, C.; Kasper, J. C.; Milani, S.; Scheible, M.; Martin, I.;
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